964 resultados para Telangiectasia, Hereditary Hemorrhagic
Resumo:
Many viruses significantly impact human and animal health. Understanding the population dynamics of these viruses and their hosts can provide important insights for epidemiology and virus evolution. Puumala virus (PUUV) is a European hantavirus that may cause regional outbreaks of hemorrhagic fever with renal syndrome in humans. Here, we analyzed the spatiotemporal dynamics of PUUV circulating in local populations of its rodent reservoir host, the bank vole (Myodes glareolus) during eight years. Phylogenetic and population genetic analyses of all three genome segments of PUUV showed strong geographical structuring at a very local scale. There was a high temporal turnover of virus strains in the local bank vole populations, but several virus strains persisted through multiple years. Phylodynamic analyses showed no significant changes in the local effective population sizes of PUUV, although vole numbers and virus prevalence fluctuated widely. Microsatellite data demonstrated also a temporally persisting subdivision between local vole populations, but these groups did not correspond to the subdivision in the virus strains. We conclude that restricted transmission between vole populations and genetic drift play important roles in shaping the genetic structure and temporal dynamics of PUUV in its natural host which has several implications for zoonotic risks of the human population.
Resumo:
Subarachnoid hemorrhage is a stroke subtype with particularly bad outcome. Recent findings suggest that constrictions of pial arterioles occurring early after hemorrhage may be responsible for cerebral ischemia and - subsequently - unfavorable outcome after subarachnoid hemorrhage. Since we recently hypothesized that the lack of nitric oxide may cause post-hemorrhagic microvasospasms, our aim was to investigate whether inhaled nitric oxide, a treatment paradigm selectively delivering nitric oxide to ischemic microvessels, is able to dilate post-hemorrhagic microvasospasms; thereby improving outcome after experimental subarachnoid hemorrhage. C57BL/6 mice were subjected to experimental SAH. Three hours after subarachnoid hemorrhage pial artery spasms were quantified by intravital microscopy, then mice received inhaled nitric oxide or vehicle. For induction of large artery spasms mice received an intracisternal injection of autologous blood. Inhaled nitric oxide significantly reduced number and severity of subarachnoid hemorrhage-induced post-hemorrhage microvasospasms while only having limited effect on large artery spasms. This resulted in less brain-edema-formation, less hippocampal neuronal loss, lack of mortality, and significantly improved neurological outcome after subarachnoid hemorrhage. This suggests that spasms of pial arterioles play a major role for the outcome after subarachnoid hemorrhage and that lack of nitric oxide is an important mechanism of post-hemorrhagic microvascular dysfunction. Reversing microvascular dysfunction by inhaled nitric oxide might be a promising treatment strategy for subarachnoid hemorrhage.
Resumo:
PURPOSE OF REVIEW Progressive cardiac conduction disorder (PCCD) is an inherited cardiac disease that may present as a primary electrical disease or be associated with structural heart disease. In this brief review, we present recent clinical, genetic, and molecular findings relating to PCCD. RECENT FINDINGS Inherited PCCD in structurally normal hearts has been found to be linked to genetic variants in the ion channel genes SCN5A, SCN1B, SCN10A, TRPM4, and KCNK17, as well as in genes coding for cardiac connexin proteins. In addition, several SCN5A mutations lead to 'cardiac sodium channelopathy overlap syndrome'. Other genes coding for cardiac transcription factors, such as NKX2.5 and TBX5, are involved in the development of the cardiac conduction system and in the morphogenesis of the heart. Mutations in these two genes have been shown to cause cardiac conduction disorders associated with various congenital heart defects. SUMMARY PCCD is a hereditary syndrome, and genetic variants in multiple genes have been described to date. Genetic screening and identification of the causal mutation are crucial for risk stratification and family counselling.
Resumo:
Multiple osteochondromas (also called hereditary multiple exostoses) is an autosomal dominant disorder characterized by multiple cartilaginous tumors, which are caused by mutations in the genes for exostosin-1 (EXT1) and exostosin-2 (EXT2). The goal of this study was to elucidate the genetic alterations in a family with three affected members. Isolation of RNA from the patients' blood followed by reverse transcription and PCR amplification of selected fragments showed that the three patients lack a specific region of 90 bp from their EXT1 mRNA. This region corresponds to the sequence of exon 8 from the EXT1 gene. No splice site mutation was found around exon 8. However, long-range PCR amplification of the region from intron 7 to intron 8 indicated that the three patients contain a deletion of 4318 bp, which includes exon 8 and part of the flanking introns. There is evidence that the deletion was caused by non-homologous end joining because the breakpoints are not located within a repetitive element, but contain multiple copies of the deletion hotspot sequence TGRRKM. Exon 8 encodes part of the active site of the EXT1 enzyme, including the DXD signature of all UDP-sugar glycosyltransferases. It is conceivable that the mutant protein exerts a dominant negative effect on the activity of the EXT glycosyltransferase since it might interact with normal copies of the enzyme to form an inactive hetero-oligomeric complex. We suggest that sequencing of RNA might be superior to exome sequencing to detect short deletions of a single exon.
Resumo:
The discoveries of the BRCA1 and BRCA2 genes have made it possible for women of families with hereditary breast/ovarian cancer to determine if they carry cancer-predisposing genetic mutations. Women with germline mutations have significantly higher probabilities of developing both cancers than the general population. Since the presence of a BRCA1 or BRCA2 mutation does not guarantee future cancer development, the appropriate course of action remains uncertain for these women. Prophylactic mastectomy and oophorectomy remain controversial since the underlying premise for surgical intervention is based more upon reduction in the estimated risk of cancer than on actual evidence of clinical benefit. Issues that are incorporated in a woman's decision making process include quality of life without breasts, ovaries, attitudes toward possible surgical morbidity as well as a remaining risk of future development of breast/ovarian cancer despite prophylactic surgery. The incorporation of patient preferences into decision analysis models can determine the quality-adjusted survival of different prophylactic approaches to breast/ovarian cancer prevention. Monte Carlo simulation was conducted on 4 separate decision models representing prophylactic oophorectomy, prophylactic mastectomy, prophylactic oophorectomy/mastectomy and screening. The use of 3 separate preference assessment methods across different populations of women allows researchers to determine how quality adjusted survival varies according to clinical strategy, method of preference assessment and the population from which preferences are assessed. ^
Resumo:
Eukaryotic cells have evolved a complex network of metabolic processes and regulatory systems to help ensure that hereditary information is protected or restored when exposed to genotoxic agents. Two members of the Snm1 protein family have been characterized; scSNM1/PSO2, a yeast gene responsible for repair of DNA interstrand crosslinks, and hARTEMIS, a human gene that is mutated in radiosensitive severe combined immunodeficiency (RS-SCID). Here we report on another member of this protein family, hSNM1, and its response to DNA damage and mitotic stress. We have found that this protein colocalizes and physically associates with 53BP1, a crucial member of the mammalian response to DNA damage. In addition, hSnm1 interacts with several proteins involved in mitosis, and mSNM1 deficiency causes a mitotic checkpoint defect in mouse embryonic fibroblasts. ^
Resumo:
It is generally believed that 1,25(OH)2D3, bound to its receptor (VDR) contributes to calcium homeostasis by regulating active calcium absorption in the proximal small intestine. However, studying patients with hereditary vitamin D-resistant rickets (HVDRR) provided investigators with a better understanding of VDR's role in calcium homeostasis. HVDRR patients have inactivating mutations in the VDR, and as a consequence they develop hypocalcemia, hyperparathyroidism and severe rickets. However, these phenotypes can be corrected if the patients are given IV infusions of calcium or dietary calcium. This raises the question of what is the physiological significance of VDR-regulated active calcium absorption if calcium homeostasis can be restored independently of the VDR. ^ In order to distinguish the contribution of VDR in the proximal small intestine to overall calcium homeostasis, I generated transgenic mice expressing the human VDR (hVDR) exclusively in the proximal small intestine of mVDR-/- mice by using an hVDR-expressing transgene driven by the duodenal-specific adenosine deaminase enhancer (hVDR+/mVDR-/-). hVDR+/mVDR-/- mice expressed transcriptionally active hVDR only in the proximal small intestine and responded to 1,25(OH)2D3 by up-regulating expression of TRPV6 and calbindin D9K, genes involved in calcium absorption. Furthermore, ligated duodenal loop assays determined that calcium absorption in hVDR+/mVDR-/- mice was as responsive to 1,25(OH)2D3 as in WT mice. Despite having a functional hVDR in the proximal small intestine, hVDR+/mVDR-/- mice were hypocalcemic, had hyperparathyroidism, and were rachitic when fed a normal rodent diet at weaning, as were the mVDR-/- mice. However, when fed a high calcium, phosphorus, and lactose diet (rescue diet), the hVDR+/mVDR-/- mice responded more effectively than the mVDR-/- mice by down-regulation of parathyroid hormone production and by a greater increase in bone mineralization. Furthermore, when three-month-old rachitic mice were fed a rescue diet for 3 weeks, serum calcium and bone mineral content were normalized in hVDR+/mVDR-/- mice, but not in mVDR-/- mice. ^ In conclusion, hVDR expression enabled young mice to better use the rescue diet than mVDR-/- mice. Expression of transgenic hVDR also protected the ability of older mice to respond to the rescue diet despite the absence of the VDR elsewhere in the intestinal tract. I propose that because hVDR+/mVDR-/- mice responded better than mVDR-/- mice to the rescue diet, it is likely that VDR expression in the proximal small intestine is necessary in nutritional (insufficient dietary calcium) and physiological (age) conditions when passive calcium absorption is inadequate. ^
Resumo:
Nucleoside analogues are antimetabolites effective in the treatment of a wide variety of solid tumors and hematological malignancies. Upon being metabolized to their active triphosphate form, these agents are incorporated into DNA during replication or excision repair synthesis. Because DNA polymerases have a greatly decreased affinity for primers terminated by most nucleoside analogues, their incorporation causes stalling of replication forks. The molecular mechanisms that recognize blocked replication may contribute to drug resistance but have not yet been elucidated. Here, several molecules involved in sensing nucleoside analogue-induced stalled replication forks have been identified and examined for their contribution to drug resistance. ^ The phosphorylation of the DNA damage sensor, H2AX, was characterized in response to nucleoside analogues and found to be dependent on both time and drug concentration. This response was most evident in the S-phase fraction and was associated with an inhibition of DNA synthesis, S-phase accumulation, and activation of the S-phase checkpoint pathway (Chk1-Cdc25A-Cdk2). Exposure of the Chk1 inhibitor, 7-hydroxystaurosporine (UCN-01), to cultures previously treated with nucleoside analogues caused increased apoptosis, clonogenic death, and a further log-order increase in H2AX phosphorylation, suggesting enhanced DNA damage. Ataxia-telangiectasia mutated (ATM) has been identified as a key DNA damage signaling kinase for initiating cell cycle arrest, DNA repair, and apoptosis while the Mre11-Rad50-Nbs1 (MRN) complex is known for its functions in double-strand break repair. Activated ATM and the MRN complex formed distinct nuclear foci that colocalized with phosphorylated H2AX after inhibition of DNA synthesis by the nucleoside analogues, gemcitabine, ara-C, and troxacitabine. Since double-strand breaks were undetectable, this response was likely due to stalling of replication forks. A similar DNA damage response was observed in human lymphocytes after exposure to ionizing radiation and in acute myelogenous leukemia blasts during therapy with the ara-C prodrug, CP-4055. Deficiencies in ATM, Mre11, and Rad50 led to a two- to five-fold increase in gemcitabine sensitivity, suggesting that these molecules contribute to drug resistance. Based on these results, a model is proposed for the sensing of nucleoside analogue-induced stalled replication forks that includes H2AX, ATM, and the Mre11-Rad50-Nbs1 complex. ^
Resumo:
Colorectal cancer is the forth most common diagnosed cancer in the United States. Every year about a hundred forty-seven thousand people will be diagnosed with colorectal cancer and fifty-six thousand people lose their lives due to this disease. Most of the hereditary nonpolyposis colorectal cancer (HNPCC) and 12% of the sporadic colorectal cancer show microsatellite instability. Colorectal cancer is a multistep progressive disease. It starts from a mutation in a normal colorectal cell and grows into a clone of cells that further accumulates mutations and finally develops into a malignant tumor. In terms of molecular evolution, the process of colorectal tumor progression represents the acquisition of sequential mutations. ^ Clinical studies use biomarkers such as microsatellite or single nucleotide polymorphisms (SNPs) to study mutation frequencies in colorectal cancer. Microsatellite data obtained from single genome equivalent PCR or small pool PCR can be used to infer tumor progression. Since tumor progression is similar to population evolution, we used an approach known as coalescent, which is well established in population genetics, to analyze this type of data. Coalescent theory has been known to infer the sample's evolutionary path through the analysis of microsatellite data. ^ The simulation results indicate that the constant population size pattern and the rapid tumor growth pattern have different genetic polymorphic patterns. The simulation results were compared with experimental data collected from HNPCC patients. The preliminary result shows the mutation rate in 6 HNPCC patients range from 0.001 to 0.01. The patients' polymorphic patterns are similar to the constant population size pattern which implies the tumor progression is through multilineage persistence instead of clonal sequential evolution. The results should be further verified using a larger dataset. ^
Resumo:
Objectives. Previous studies have shown a survival advantage in ovarian cancer patients with Ashkenazi-Jewish (AJ) BRCA founder mutations, compared to sporadic ovarian cancer patients. The purpose of this study was to determine if this association exists in ovarian cancer patients with non-Ashkenazi Jewish BRCA mutations. In addition, we sought to account for possible "survival bias" by minimizing any lead time that may exist between diagnosis and genetic testing. ^ Methods. Patients with stage III/IV ovarian, fallopian tube, or primary peritoneal cancer and a non-Ashkenazi Jewish BRCA1 or 2 mutation, seen for genetic testing January 1996-July 2007, were identified from genetics and institutional databases. Medical records were reviewed for clinical factors, including response to initial chemotherapy. Patients with sporadic (non-hereditary) ovarian, fallopian tube, or primary peritoneal cancer, without family history of breast or ovarian cancer, were compared to similar cases, matched by age, stage, year of diagnosis, and vital status at time interval to BRCA testing. When possible, 2 sporadic patients were matched to each BRCA patient. An additional group of unmatched, sporadic ovarian, fallopian tube and primary peritoneal cancer patients was included for a separate analysis. Progression-free (PFS) & overall survival (OS) were calculated by the Kaplan-Meier method. Multivariate Cox proportional hazards models were calculated for variables of interest. Matched pairs were treated as clusters. Stratified log rank test was used to calculate survival data for matched pairs using paired event times. Fisher's exact test, chi-square, and univariate logistic regression were also used for analysis. ^ Results. Forty five advanced-stage ovarian, fallopian tube and primary peritoneal cancer patients with non-Ashkenazi Jewish (non-AJ) BRCA mutations, 86 sporadic-matched and 414 sporadic-unmatched patients were analyzed. Compared to the sporadic-matched and sporadic-unmatched ovarian cancer patients, non-AJ BRCA mutation carriers had longer PFS (17.9 & 13.8 mos. vs. 32.0 mos., HR 1.76 [95% CI 1.13–2.75] & 2.61 [95% CI 1.70–4.00]). In relation to the sporadic- unmatched patients, non-AJ BRCA patients had greater odds of complete response to initial chemotherapy (OR 2.25 [95% CI 1.17–5.41]) and improved OS (37.6 mos. vs. 101.4 mos., HR 2.64 [95% CI 1.49–4.67]). ^ Conclusions. This study demonstrates a significant survival advantage in advanced-stage ovarian cancer patients with non-AJ BRCA mutations, confirming the previous studies in the Jewish population. Our efforts to account for "survival bias," by matching, will continue with collaborative studies. ^
Resumo:
GS-9219 is a cell-permeable double-prodrug of the acyclic nucleotide analogue 9-(2-phosphonylmethoxyethyl)guanine (PMEG). The conversion of GS-9219 to its active metabolite, PMEG diphosphate (PMEGpp), involves several intracellular enzymatic reactions which reduces the concentration of nephrotoxic PMEG in plasma. PMEGpp competes with the natural substrate, dGTP, for incorporation by DNA polymerases. The lack of a 3'-hydroxyl moiety makes PMEGpp a de facto DNA chain-terminator. The incorporation of PMEGpp into DNA during DNA replication causes DNA chain-termination and stalled replication forks. Thus, the primary mechanism of action of GS-9219 in replicating cells is via DNA synthesis inhibition. GS-9219 has substantial antiproliferative activity against activated lymphocytes and tumor cell lines of hematological malignancies. Tumor cell proliferation was significantly reduced as measured by PET/CT scans in dogs with advanced-stage, spontaneously occurring non-Hodgkin's lymphoma (NHL).^ The hypothesis of this dissertation is that the incorporation of PMEGpp into DNA during repair re-synthesis would result in the inhibition of DNA repair and accumulation of DNA damage in chronic lymphocytic leukemia (CLL) cells and activate signaling pathways to cell death.^ To test this hypothesis, CLL cells were treated with DNA-damaging agents to stimulate nucleotide excision repair (NER) pathways, enabling the incorporation of PMEGpp into DNA. When NER was activated by UV, PMEGpp was incorporated into DNA in CLL cells. Following PMEGpp incorporation, DNA repair was inhibited and led to the accumulation of DNA strand breaks. The combination of GS-9219 and DNA-damaging agents resulted in more cell death than the sum of the single agents alone. The presence of DNA strand breaks activated the phosphatidylinositol 3-kinase-like protein kinase (PIKK) family members ataxia-telangiectasia mutated (ATM) and DNA-dependent protein kinase (DNA-PK). The activated ATM initiated signaling to the downstream target, p53, which was subsequently phosphorylated and accumulated to exert its apoptotic functions. P53-targeted pro-apoptotic genes, Puma and Bax, were upregulated and activated when DNA repair was inhibited, likely contributing to cell death. ^
Resumo:
Lymphocyte development requires the assembly of diversified antigen receptor complexes generated by the genetically programmed V(D)J recombination event. Because germline DNA is cut, introducing potentially dangerous double-stranded breaks (DSBs) and rearranged prior to repair, its activity is limited to the non-cycling stages of the cell cycle, G0/G1. The potential involvement of a key mediator, Ataxia Telangiectasia Mutated or ATM, in the DNA damage response (DDR) and cell cycle checkpoints has been implicated in recombination, but its role is not fully understood. Thymic lymphomas from ATM deficient mice contain clonal chromosomal translocations involving the T-cell antigen receptor (TCR). A previous report found ATM and its downstream target p53 associated with V(D)J intermediates, suggesting the DDR senses recombination. In this study, we sought to understand the role of ATM in V(D)J recombination. Developing thymocytes from ATM deficient mice were analyzed according to the cell cycle to detect V(D)J intermediates. Examination of all TCR loci in the non-cycling (G0/G1) and cycling (S/G2/M) fractions revealed the persistence of intermediates in ATM deficient thymocytes, contrary to the wild-type in which intermediates are found only during G0/G1. Further analysis found no defect in end-joining of intermediates, nor were they detected in developed T-cells. Based upon the presence of persisting intermediates, the recombination initiating nuclease Rag-2 was examined; strict regulation limits it to G 0/G1. Rag-2 regulation was not affected by an ATM deficiency as Rag-2 expression remained contained within G0/G 1, indicating recombination is not continuous. To determine if an ATM deficiency affects recognition of V(D)J breaks, sites of recombination identified by a TCR locus or Rag expression were analyzed according to co-localization with a DDR factor phosphorylated immediately after DNA damage, phosphorylated H2AX (γH2AX). No differences in co-localization were found between the wild-type and ATM deficiency, demonstrating ATM deficient lymphocytes retain the ability to recognize DSBs. Together, these results suggest ATM is necessary in the cell cycle regulation of recombination but not essential for the identification of V(D)J breaks. ATM ensures the containment of intermediates within G0/G1 and maintains genomic stability of developing lymphocytes, emphasizing its fundamental role in preventing tumorigenesis.^
Resumo:
Recent outbreaks of dengue fever (DF) along the United States/Mexico border, coupled with the high number of reported cases in Mexico suggest that there is the possibility for DF emergence in Houston, Texas1,2. To determine the presence of DF, populations of Aedes aegypti and Aedes albopictus were identified and tested for dengue virus. Maps were created to identify "hot spots" (Figure 1) based on historical data on Ae. aegypti and Ae. albopictus, demographic information, and locations of human cases of dengue fever. BG Sentinel Traps®, in conjunction with BG Lure® attractant, octanol and dry ice, were used to collect mosquitoes, which were then tested for presence of dengue virus using ELISA techniques. All samples tested were negative for dengue virus (DV). Survival of DV ultimately comes down to whether or not it will be vectored by a mosquito to a susceptible human host. The presence of infected humans and contact with the mosquito vectors are two critical factors necessary in the establishment of DF. Historical records indicate the presence of Ae. aegypti and Ae. albopictus in Harris County, which would support localized dengue transmission if infected individuals are present.^ (1) Brunkard JM, Robles-Lopez JL, Ramirez J, Cifuentes E, Rothenberg SJ, Hunsperger EA, Moore CG, Brussolo RM, Villarreal NA, Haddad BM, 2007. Dengue fever seroprevalence and risk factors, Texas-Mexico border, 2004. Emerg Infect Dis 13: 1477-1483. (2) Ramos MM, Mohammed H, Zielinski-Gutierrez E, Hayden MH, Lopez JL, Fournier M, Trujillo AR, Burton R, Brunkard JM, Anaya-Lopez L, Banicki AA, Morales PK, Smith B, Munoz JL, Waterman SH, 2008. Epidemic dengue and dengue hemorrhagic fever at the Texas-Mexico Border: results of a household-based seroepidemiologic survey, December 2005. Am J Trop Med Hyg 78: 364-369.^
Resumo:
The 3-hydroxy-3methylglutaryl coenzyme A (HMG-CoA) reductase inhibitors, or statins, can achieve significant reductions in plasma low-density lipoprotein (LDL)-cholesterol levels. Experimental and clinical evidence now shows that some statins interfere with formation of atherosclerotic lesions independent of their hypolipidemic properties. Vulnerable plaque rupture can result in thrombus formation and artery occlusion; this plaque deterioration is responsible for most acute coronary syndromes, including myocardial infarction (MI), unstable angina, and coronary death, as well as coronary heart diseaseequivalent non-hemorrhagic stroke. Inhibition of HMG-CoA reductase has potential pleiotropic effects other than lipid-lowering, as statins block mevalonic acid production, a precursor to cholesterol and numerous other metabolites. Statins' beneficial effects on clinical events may also thus involve nonlipid-related mechanisms that modify endothelial function, inflammatory responses, plaque stability, and thrombus formation. Aspirin, routinely prescribed to post-MI patients as adjunct therapy, may potentiate statins beneficial effects, as aspirin does not compete metabolically with statins but acts similarly on atherosclerotic lesions. Common functions of both medications include inhibition of platelet activity and aggregation, reduction in atherosclerotic plaque macrophage cell count, and prevention of atherosclerotic vessel endothelial dysfunction. The Cholesterol and Recurrent Events (CARE) trial provides an ideal population in which to examine the combined effects of pravastatin and aspirin. Lipid levels, intermediate outcomes, are examined by pravastatin and aspirin status, and differences between the two pravastatin groups are found. A modified Cox proportional-hazards model with aspirin as a time-dependent covariate was used to determine the effect of aspirin and pravastatin on the clinical cardiovascular composite endpoint of coronary heart disease death, recurrent MI or stroke. Among those assigned to pravastatin, use of aspirin reduced the composite primary endpoint by 35%; this result was similar by gender, race, and diabetic status. Older patients demonstrated a nonsignificant 21% reduction in the primary outcome, whereas the younger had a significant reduction of 43% in the composite primary outcome. Secondary outcomes examined include coronary artery bypass graft (38% reduction), nonsurgical bypass, peripheral vascular disease, and unstable angina. Pravastatin and aspirin in a post-MI population was found to be a beneficial combination that seems to work through lipid and nonlipid, anti-inflammatory mechanisms. ^
Resumo:
A rare familial cancer syndrome involving childhood brain tumors (CBT), breast cancer, sarcomas and an array of other tumors has been described (Li and Fraumeni 1969, 1975, 1982, 1987). A survey of CBT identified through the Connnecticut Tumor Registry in 1984 revealed a high frequency of CBT, leukemia and other childhood cancer in siblings of CBT patients (Farwell and Flannery, 1984). Other syndromes such as neurofibromatosis and nevoid basal cell carcinoma syndrome have also been associated with CBT; however, no systematic family studies have been conducted to determine the extent to which cancer aggregates in family members of CBT patients. This family study was designed to determine the frequency of cancer aggregation overall or at specific sites, to determine the frequency of known or potentially hereditary syndromes in families of CBT patients, and to determine a genetic model to characterize familial cancer syndromes and to identify specific kindreds to which such a model(s) might apply. This study includes 244 confirmed CBT patients referred to the University of Texas M. D. Anderson Cancer Center between the years 1944 and 1983, diagnosed under the age of 15 years and resident in the U.S. or Canada. Family histories were obtained on the proband's first (parents, siblings and offspring) and second degree (proband's aunts, uncles and grandparents) relatives following sequential sampling scheme rules. To determine if cancer aggregates in families, we compared the cancer experience in the population to that expected in the general population using Connecticut Tumor Registry calendar year, age, race and sex-specific rates. The standardized incidence ratio (SIR) for cancer overall was 0.91 (41 observed (O) and 44.94 expected (E); 95% Confidence Interval (CI) = 0.65-1.24). We observed a significant excess of colon cancer among the proband's first degree relatives (O/E = 5/1.64; 95% CI = 1.01-7.65), in particular those under age 45 year. Segregation analysis showed evidence for multifactorial inheritance in the small percentage (N = 5) of the families. ^