1000 resultados para Tazin River
Resumo:
Dept.of Marine Geology & Geophysics, Cochin University of Sceince and Technology
Resumo:
The present study which is the first of its kind in this region is an attempt to generate adequate information on the relative abundances, the seasonal and spatial variations as well as on the source and fate of organic compounds found associated with the dissolved, particulate and sedimentary compartments of Chalakudy river system. The study aimed at investigating variations, the relative proportion of dissolved, particulate and sedimentary fractions of these materials as well as the pollution extent so as to be able to comment on the present condition of this river-estuarine system. This thesis focuses attention on the role of biogeoorganics in modifying the ecological and environmental condition of the dissolved, particuIate and sediment compartments with their minute variability subjected to various physical, chemical and biogeochemical processes. A scheme of study encompassing all these objectives provides the frame work for the present investigation.
Resumo:
Drainage basins are durable geomorphic features that provide insights into the long term evolution of the landscape. River basin geometry develop response to the nature and distribution of uplift and subsidence, the spatial arrangement of lineaments (faults and joints), the relative resistance of different rock types and to climatically influenced hydrological parameters . For developing a drainage basin evolution history, it is necessary to understand physiography, drainage patterns, geomorphic features and its structural control and erosion status. The present study records evidences for active tectonic activities which were found to be responsible for the present day geomorphic set up of the study area since the Western Ghat evolution. A model was developed to explain the evolution of Chaliar River drainage basin based on detailed interpretation of morphometry and genesis of landforms with special emphasis on tectonic geomorphic indices and markers.
Resumo:
This study was aimed at to characterize the spatio-temporal trends in the distributional characteristics of various species of nitrogen and phosphorus as well as to elucidate the factors and processes aflecting these nutrients in the dissolved, particulate and sedimentary phases of a river estuarine system. The main area of study is Chalakudy river in Kerala, which is a fresh water system originating from Anamalai hills and ending at Arabian Sea. Its basin is between I00 05 ’ to I00 35’ North latitude and 76” 15 ’ to 760 55’ East longitude. Being a riparian bufler zone, the dynamics of nutrient mobility tend to be more complex and variable in this river-estuarine system.The diflerent species of nitrogen estimated from the filtrate were nitrite-N, nitrateN, ammonia-N, urea-N, total nitrogen and residual nitrogen. The diflerent forms of phosphorus estimated from the filtrate were phosphate-P, total-P and residualP. Pre weighed sediments as well as particulate matter were analysed for quantijying nitrite-N, nitrate-N, ammonia-N and urea-N. Total nitrogen was estimated after digestion with potassium persulfate. Fractionation of phosphorus in sediment/particulate matter was performed by applying sequential extraction procedure. The dijferent forms of phosphorus thus estimated were loosely bound (exchangeable) P, Fe/Al bound P, polyphosphates, Ca bound P and refractory P. Sedimental total P was also measured directly by applying digestion method.The analyses carried out in this bimonthly annual survey have revealed specific information on the latent factors influencing the water quality pattern ofthe river. There was dependence among the chemical components of the river sediment and suspended matter, reflecting the water quality. A period of profound environmental change occurred and changes in various species had been noted in association with seasonal variations in the waterway, especially following enhanced river runoff during the monsoon. The results also successfully represented the distribution trend of nutrients during the rainy as well as dry season. Thus, the information gathered in this work will also be beneficial for those interested or involved in river management, conservation, regulation and policy making in regional and national levels.
Resumo:
The present work deals with the An integrated study on the hydrogeology of Bharathapuzha river basin ,south west coast of india. To study the spatial and temporal behaviour of the groundwater system of the Bharathapuzha river basin.To discover the sub-surface parameter by ground resistivity surveys.T o determine the groundwater quality of the Bharathapuzha river basin for the different seasons {pre monsoon and post monsoon with reference to the domestic and irrigational water quality standards.Present study will provide a good database on the hydrogeological aspects within the river basin.The study area covers l7 block Panchayats. Of these, Chitoor block is ‘over exploited’, Kollengode, Trithala, and Palakkad are ‘critical’ in category and Kuttippuram and Sreekrishnapuram blocks are ‘semi critical’ in terms of groundwater development.Comparison of Geomorphology map with drainage map shows that the geomorphology has a clear control on the drainage net work of the basin. The structural hill area shows a highest drainage network, where as pediment shows lowest drainage network.There are many discontinuous lineament in the Bharathapuzha river basin which can be connected by a straight line.Ground water flow directions are generally towards the western portions of the study area. From the northern region Water flows towards the central and also water from the eastern and southern side confluences at the centre and move towards western side of the basin.The positive correlation of transmissivity and storativity values show good aquifer conditions exists in the present study area .
Resumo:
The thesis entitled Growth Response of Phytoplankton Exposed to Industrial Effluents in River Periyar. The present investigation has been conducted in two phases: field observation and algal assays. The monthly distribution of hydrographic features is represented graphically. The sampling year has been divided into three seasons: monsoon (June to September), postmonsoon (October to January) and premonsoon (February to May). The data were analysed using Student's t-test to find whether there was any significant difference between surface and bottom samples. The spatial variation of the variables was assessed by Page's L (trend) test (Ray Meddis, 1975). The standard procedure for algal toxicity test (Ward and Parrish, 1982) was followed throughout the study. Statistical analysis (Page's L (trend) test) showed that there was no significant difference in Secchi disc transparency between the stations. The field observations as well as the laboratory assays confirm that the rate of discharge in river Periyar during premonsoon is insufficient to effect dilution of wastewater received in the industrial zone.
Resumo:
Hydrodynamic characteristics of an estuary resulting from interaction of tide and river runoff are important since problems regarding flood, salinity intrusion, water quality, ecosystem and sedimentation are ubiquitous. The present study focuses on such hydrodynamic aspects in the Cochin estuary. Most of the estuaries that come under the influence of Indian Summer Monsoon and for which the salinity is never in a steady state at any time of the year are generally shallow and convergent, i.e. the width decreases rapidly from mouth to head. In contrast, Cochin estuary is wider towards the upstream and has no typical river mouth, where the rivers are joining the estuary along the length of its channel .Adding to the complexity it has dual inlets and the tidal range is 1 m which is lower than other Indian estuaries along west coast. These typical physical features lead to its unique hydrodynamic characteristics. Therefore the thesis objectives are: I) to study the influence of river runoff on tidal propagation using observations and a numerical model ii) to study stratification and property distributions in Cochin estuary iii) to understand salinity distributions and flushing characteristics iv) to understand the influence of saltwater barrage on tides and salinity v) To evaluate several classification schemes for the estuary
Resumo:
The present study aims at the investigation of the 1ysico—chemical features of a tropical tidal river viz. we Muvattupuzha river. This river is expected to receive Jderate to heavy pollution loads in years to come, from we lone industrial unit, already set up on its bank. ilike other rivers, the geographical disposition of this Lver attains unique importance as regards its dynamics for 3) availability of natural runoff water from catchment :eas, which becomes very heavy during the monsoon season 3) regular steady availability of tail race water from a /dro—electric power station throughout the yearThe study also aims at arriving at the balancing forces of inherent self~purification of the river verses pollution loads from the factory effluents. The investigation period falls ahead of actual pollution occurrence and so the ambient conditions for a period of nearly one-and-a—half years were investigated, the analyses of which providflz to formulate the inter-relations of parameters varying with seasons. Tracer experiments were carried out which revealed the dispersion and dilution characteristics of the river in the vicinity of effluent outfall. The studv covers the trial—cum-capacity production periods of the factory during which effluents of various strength and quantity were discharged into the river; a few computed values arQ’cjmpgrQdl ... with the observed values. The base data along with the profiles of Oxygen sag equation have been utilized fb develop a mathematical model of the river with regard to its water quality
Resumo:
Wenn man die Existenz von physikalischen Mechanismen ignoriert, die für die Struktur hydrologischer Zeitreihen verantwortlich sind, kann das zu falschen Schlussfolgerungen bzgl. des Vorhandenseins möglicher Gedächtnis (memory) -Effekte, d.h. von Persistenz, führen. Die hier vorgelegte Doktorarbeit spürt der niedrigfrequenten klimatischen Variabilität innerhalb den hydrologischen Zyklus nach und bietet auf dieser "Reise" neue Einsichten in die Transformation der charakteristischen Eigenschaften von Zeitreihen mit einem Langzeitgedächtnis. Diese Studie vereint statistische Methoden der Zeitreihenanalyse mit empirisch-basierten Modelltechniken, um operative Modelle zu entwickeln, die in der Lage sind (1) die Dynamik des Abflusses zu modellieren, (2) sein zukünftiges Verhalten zu prognostizieren und (3) die Abflusszeitreihen an unbeobachteten Stellen abzuschätzen. Als solches präsentiert die hier vorgelegte Dissertation eine ausführliche Untersuchung zu den Ursachen der niedrigfrequenten Variabilität von hydrologischen Zeitreihen im deutschen Teil des Elbe-Einzugsgebietes, den Folgen dieser Variabilität und den physikalisch basierten Reaktionen von Oberflächen- und Grundwassermodellen auf die niedrigfrequenten Niederschlags-Eingangsganglinien. Die Doktorarbeit gliedert sich wie folgt: In Kapitel 1 wird als Hintergrundinformation das Hurst Phänomen beschrieben und ein kurzer Rückblick auf diesbezügliche Studien gegeben. Das Kapitel 2 diskutiert den Einfluss der Präsenz von niedrigfrequenten periodischen Zeitreihen auf die Zuverlässigkeit verschiedener Hurst-Parameter-Schätztechniken. Kapitel 3 korreliert die niedrigfrequente Niederschlagsvariabilität mit dem Index der Nord-Atlantischen Ozillations (NAO). Kapitel 4-6 sind auf den deutschen Teil des Elbe-Einzugsgebietes fokussiert. So werden in Kapitel 4 die niedrigfrequenten Variabilitäten der unterschiedlichen hydro-meteorologischen Parameter untersucht und es werden Modelle beschrieben, die die Dynamik dieser Niedrigfrequenzen und deren zukünftiges Verhalten simulieren. Kapitel 5 diskutiert die mögliche Anwendung der Ergebnisse für die charakteristische Skalen und die Verfahren der Analyse der zeitlichen Variabilität auf praktische Fragestellungen im Wasserbau sowie auf die zeitliche Bestimmung des Gebiets-Abflusses an unbeobachteten Stellen. Kapitel 6 verfolgt die Spur der Niedrigfrequenzzyklen im Niederschlag durch die einzelnen Komponenten des hydrologischen Zyklus, nämlich dem Direktabfluss, dem Basisabfluss, der Grundwasserströmung und dem Gebiets-Abfluss durch empirische Modellierung. Die Schlussfolgerungen werden im Kapitel 7 präsentiert. In einem Anhang werden technische Einzelheiten zu den verwendeten statistischen Methoden und die entwickelten Software-Tools beschrieben.
Resumo:
Globalization is widely regarded as the rise of the borderless world. However in practice, true globalization points rather to a “spatial logic” by which globalization is manifested locally in the shape of insular space. Globalization in this sense is not merely about the creation of physical fragmentation of space but also the creation of social disintegration. This study tries to proof that global processes also create various forms of insular space leading also to specific social implications. In order to examine the problem this study looks at two cases: China’s Pearl River Delta (PRD) and Jakarta in Indonesia. The PRD case reveals three forms of insular space namely the modular, concealed and the hierarchical. The modular points to the form of enclosed factories where workers are vulnerable for human-right violations due to the absent of public control. The concealed refers to the production of insular space by subtle discrimination against certain social groups in urban space. And the hierarchical points to a production of insular space that is formed by an imbalanced population flow. The Jakarta case attempts to show more types of insularity in relation to the complexity of a mega-city which is shaped by a culture of exclusion. Those are dormant and hollow insularity. The dormant refers to the genesis of insular– radical – community from a culture of resistance. The last type, the hollow, points to the process of making a “pseudo community” where sense of community is not really developed as well as weak social relationship with its surrounding. Although global process creates various expressions of territorial insularization, however, this study finds that the “line of flight” is always present, where the border of insularity is crossed. The PRD’s produces vernacular modernization done by peasants which is less likely to be controlled by the politics of insularization. In Jakarta, the culture of insularization causes urban informalities that have no space, neither spatially nor socially; hence their state of ephemerality continues as a tactic of place-making. This study argues that these crossings possess the potential for reconciling venue to defuse the power of insularity.
Resumo:
The indigenous vegetation surrounding the river oases on the southern rim of the Taklamakan Desert has drastically diminished due to overexploitation as a source of fodder, timber and fuel for the human population. The change in the spatial extent of landscape forms and vegetation types around the Qira oasis was analyzed by comparing SPOT satellite images from 1998 with aerial photographs from 1956. The analysis was supplemented by field surveys in 1999 and 2000. The study is part of a joint Chinese-European project with the aim of assessing the current state of the foreland vegetation, of gathering information on the regeneration potential and of suggesting procedures for a sustainable management. With 33 mm of annual precipitation, plants can only grow if they have access to groundwater, lakes or rivers. Most of the available water comes into the desert via rivers in the form of seasonal flooding events resulting from snow melt in the Kun Lun Mountains. This water is captured in canal systems and used for irrigation of arable fields. Among the eight herbaceous and woody vegetation types and the type of open sand without any plant life that were mapped in 2000 in the oasis foreland, only the latter, the oasis border between cultivated land and open Populus euphratica forests and Tamarix ramosissima-Phragmites australis riverbed vegetation could be clearly identified on the photographs from 1956. The comparison of the images revealed that the oasis increased in area between 1956 and 2000. Shifting sand was successfully combated near to the oasis borders but increased in extent at the outward border of the foreland vegetation. In contrast to expectations, the area covered with Populus trees was smaller in 1956 than today due to some new forests in the north of the oasis that have grown up since 1977. Subfossil wood and leaf remnants of Populus euphratica that were found in many places in the foreland must have originated from forests destroyed before 1956. In the last 50 years, the main Qira River has shifted its bed significantly northward and developed a new furcation with a large new bed in 1986. The natural river dynamics are not only an important factor in forming the oasis’ landscape but also in providing the only possible regeneration sites for all occurring plant species. The conclusion of the study is that the oasis landscape has changed considerably in the last 50 years due to natural floodings and to vegetation degradation by human overexploitation. The trend towards decreasing width of the indigenous vegetation belt resulting from the advancing desert and the expansion of arable land is particularly alarming because a decrease in its protective function against shifting sand can be expected in the future.
Resumo:
The Upper Blue Nile River Basin (UBNRB) located in the western part of Ethiopia, between 7° 45’ and 12° 45’N and 34° 05’ and 39° 45’E has a total area of 174962 km2 . More than 80% of the population in the basin is engaged in agricultural activities. Because of the particularly dry climate in the basin, likewise to most other regions of Ethiopia, the agricultural productivity depends to a very large extent on the occurrence of the seasonal rains. This situation makes agriculture highly vulnerable to the impact of potential climate hazards which are about to inflict Africa as a whole and Ethiopia in particular. To analyze these possible impacts of future climate change on the water resources in the UBNRB, in the first part of the thesis climate projection for precipitation, minimum and maximum temperatures in the basin, using downscaled predictors from three GCMs (ECHAM5, GFDL21 and CSIRO-MK3) under SRES scenarios A1B and A2 have been carried out. The two statistical downscaling models used are SDSM and LARS-WG, whereby SDSM is used to downscale ECHAM5-predictors alone and LARS-WG is applied in both mono-model mode with predictors from ECHAM5 and in multi-model mode with combined predictors from ECHAM5, GFDL21 and CSIRO-MK3. For the calibration/validation of the downscaled models, observed as well as NCEP climate data in the 1970 - 2000 reference period is used. The future projections are made for two time periods; 2046-2065 (2050s) and 2081-2100 (2090s). For the 2050s future time period the downscaled climate predictions indicate rise of 0.6°C to 2.7°C for the seasonal maximum temperatures Tmax, and of 0.5°C to 2.44°C for the minimum temperatures Tmin. Similarly, during the 2090s the seasonal Tmax increases by 0.9°C to 4.63°C and Tmin by 1°C to 4.6°C, whereby these increases are generally higher for the A2 than for the A1B scenario. For most sub-basins of the UBNRB, the predicted changes of Tmin are larger than those of Tmax. Meanwhile, for the precipitation, both downscaling tools predict large changes which, depending on the GCM employed, are such that the spring and summer seasons will be experiencing decreases between -36% to 1% and the autumn and winter seasons an increase of -8% to 126% for the two future time periods, regardless of the SRES scenario used. In the second part of the thesis the semi-distributed, physically based hydrologic model, SWAT (Soil Water Assessment Tool), is used to evaluate the impacts of the above-predicted future climate change on the hydrology and water resources of the UBNRB. Hereby the downscaled future predictors are used as input in the SWAT model to predict streamflow of the Upper Blue Nile as well as other relevant water resources parameter in the basin. Calibration and validation of the streamflow model is done again on 1970-2000 measured discharge at the outlet gage station Eldiem, whereby the most sensitive out the numerous “tuneable” calibration parameters in SWAT have been selected by means of a sophisticated sensitivity analysis. Consequently, a good calibration/validation model performance with a high NSE-coefficient of 0.89 is obtained. The results of the future simulations of streamflow in the basin, using both SDSM- and LARS-WG downscaled output in SWAT reveal a decline of -10% to -61% of the future Blue Nile streamflow, And, expectedly, these obviously adverse effects on the future UBNRB-water availibiliy are more exacerbated for the 2090’s than for the 2050’s, regardless of the SRES.
Resumo:
The rivers are considered as the life line of any country since they make water available for our domestic, industrial and recreational functions. The quality of river water signifies the health status and hygienic aspects of a particular region, but the quality of these life lines is continuously deteriorating due to discharge of sewage, garbage and industrial effluents into them. Thrust on water demand has increased manifolds due to the increased population, therefore tangible efforts to make the water sources free from pollution is catching attention all across the globe. This paper attempts to highlight the trends in water quality change of River Beas, right from Manali to Larji in India. This is an important river in the state of Himachal Pradesh and caters to the need of water for Manali and Kullu townships, besides other surrounding rural areas. The Manali-Larji Beas river stretch is exposed to the flow of sewage, garbage and muck resulting from various project activities, thereby making it vulnerable to pollution. In addition, the influx of thousands of tourists to these towns also contributes to the pollution load by their recreational and other tourist related activities. Pollution of this river has ultimately affected the livelihood of local population in this region. Hence, water quality monitoring was carried out for the said stretch between January, 2010 and January, 2012 at 15 various locations on quarterly basis, right from the upstream of Manali town and up to downstream of Larji dam. Temperature, color, odor, D.O. , pH, BOD, TSS, TC and FC has been the parameters that were studied. This study gives the broad idea about the characteristics of water at locations in the said river stretch, and suggestions for improving water quality and livelihood of local population in this particular domain.