996 resultados para TROPICAL FORAGES
Resumo:
The synoptic evolution of three tropical–extratropical (TE) interactions, each responsible for extreme rainfall events over southern Africa, is discussed in detail. Along with the consideration of previously studied events, common features of these heavy rainfall producing tropical temperate troughs (TTTs) over southern Africa are discussed. It is found that 2 days prior to an event, northeasterly moisture transports across Botswana, set up by the Angola low, are diverted farther south into the semiarid region of subtropical southern Africa. The TTTs reach full maturity as a TE cloud band, rooted in the central subcontinent, which is triggered by upper-level divergence along the leading edge of an upper-tropospheric westerly wave trough. Convection and rainfall within the cloud band is supported by poleward moisture transports with subtropical air rising as it leaves the continent and joins the midlatitude westerly flow. It is shown that these systems fit within a theoretical framework describing similar TE interactions found globally. Uplift forcing for the extreme rainfall of each event is investigated. Unsurprisingly, quasigeostrophic uplift is found to dominate in the midlatitudes with convective processes strongest in the subtropics. Rainfall in the semiarid interior of South Africa appears to be a result of quasigeostrophically triggered convection. Investigation of TTT formation in the context of planetary waves shows that early development is sometimes associated with previous anticyclonic wave breaking south of the subcontinent, with full maturity of TTTs occurring as a potential vorticity trough approaches the continent from the west. Sensitivity to upstream wave perturbations and effects on anticyclonic wave breaking in the South Indian Ocean are also observed.
Resumo:
An automated cloud band identification procedure is developed that captures the meteorology of such events over southern Africa. This “metbot” is built upon a connected component labelling method that enables blob detection in various atmospheric fields. Outgoing longwave radiation is used to flag candidate cloud band days by thresholding the data and requiring detected blobs to have sufficient latitudinal extent and exhibit positive tilt. The Laplacian operator is used on gridded reanalysis variables to highlight other features of meteorological interest. The ability of this methodology to capture the significant meteorology and rainfall of these synoptic systems is tested in a case study. Usefulness of the metbot in understanding event to event similarities of meteorological features is demonstrated, highlighting features previous studies have noted as key ingredients to cloud band development in the region. Moreover, this allows the presentation of a composite cloud band life cycle for southern Africa events. The potential of metbot to study multiscale interactions is discussed, emphasising its key strength: the ability to retain details of extreme and infrequent events. It automatically builds a database that is ideal for research questions focused on the influence of intraseasonal to interannual variability processes on synoptic events. Application of the method to convergence zone studies and atmospheric river descriptions is suggested. In conclusion, a relation-building metbot can retain details that are often lost with object-based methods but are crucial in case studies. Capturing and summarising these details may be necessary to develop deeper process-level understanding of multiscale interactions.
Resumo:
The extra-tropical response to El Niño in configurations of a coupled model with increased horizontal resolution in the oceanic component is shown to be more realistic than in configurations with a low resolution oceanic component. This general conclusion is independent of the atmospheric resolution. Resolving small-scale processes in the ocean produces a more realistic oceanic mean state, with a reduced cold tongue bias, which in turn allows the atmospheric model component to be forced more realistically. A realistic atmospheric basic state is critical in order to represent Rossby wave propagation in response to El Niño, and hence the extra-tropical response to El Niño. Through the use of high and low resolution configurations of the forced atmospheric-only model component we show that, in isolation, atmospheric resolution does not significantly affect the simulation of the extra-tropical response to El Niño. It is demonstrated, through perturbations to the SST forcing of the atmospheric model component, that biases in the climatological SST field typical of coupled model configurations with low oceanic resolution can account for the erroneous atmospheric basic state seen in these coupled model configurations. These results highlight the importance of resolving small-scale oceanic processes in producing a realistic large-scale mean climate in coupled models, and suggest that it might may be possible to “squeeze out” valuable extra performance from coupled models through increases to oceanic resolution alone.
Resumo:
High-resolution simulations over a large tropical domain (∼20◦S–20◦N and 42◦E–180◦E) using both explicit and parameterized convection are analyzed and compared to observations during a 10-day case study of an active Madden-Julian Oscillation (MJO) event. The parameterized convection model simulations at both 40 km and 12 km grid spacing have a very weak MJO signal and little eastward propagation. A 4 km explicit convection simulation using Smagorinsky subgrid mixing in the vertical and horizontal dimensions exhibits the best MJO strength and propagation speed. 12 km explicit convection simulations also perform much better than the 12 km parameterized convection run, suggesting that the convection scheme, rather than horizontal resolution, is key for these MJO simulations. Interestingly, a 4 km explicit convection simulation using the conventional boundary layer scheme for vertical subgrid mixing (but still using Smagorinsky horizontal mixing) completely loses the large-scale MJO organization, showing that relatively high resolution with explicit convection does not guarantee a good MJO simulation. Models with a good MJO representation have a more realistic relationship between lower-free-tropospheric moisture and precipitation, supporting the idea that moisture-convection feedback is a key process for MJO propagation. There is also increased generation of available potential energy and conversion of that energy into kinetic energy in models with a more realistic MJO, which is related to larger zonal variance in convective heating and vertical velocity, larger zonal temperature variance around 200 hPa, and larger correlations between temperature and ascent (and between temperature and diabatic heating) between 500–400 hPa.
Resumo:
The authors estimate climate warming–related twenty-first-century changes of moisture transports from the descending into the ascending regions in the tropics. Unlike previous studies that employ time and space averaging, here homogeneous high horizontal and vertical resolution data from an Intergovernmental Panel on Climate Change Fourth Assessment Report (IPCC AR4) climate model are used. This allows for estimating changes in much greater detail (e.g., the estimation of the distribution of ascending and descending regions, changes in the vertical profile, and separating changes of the inward and outward transports). Low-level inward and midlevel outward moisture transports of the convective regions in the tropics are found to increase in a simulated anthropogenically warmed climate as compared to a simulated twentieth-century atmosphere, indicating an intensification of the hydrological cycle. Since an increase of absolute inward transport exceeds the absolute increase of outward transport, the resulting budget is positive, meaning that more water is projected to converge in the moist tropics. The intensification is found mainly to be due to the higher amount of water in the atmosphere, while the contribution of weakening wind counteracts this response marginally. In addition the changing statistical properties of the vertical profile of the moisture transport are investigated and the importance of the substantial outflow of moisture from the moist tropics at midlevels is demonstrated.
Resumo:
We present the results of simulations carried out with the Met Office Unified Model at 12km, 4km and 1.5km resolution for a large region centred on West Africa using several different representations of the convection processes. These span the range of resolutions from much coarser than the size of the convection processes to the cloud-system resolving and thus encompass the intermediate "grey-zone". The diurnal cycle in the extent of convective regions in the models is tested against observations from the Geostationary Earth Radiation Budget instrument on Meteosat-8. By this measure, the two best-performing simulations are a 12km model without convective parametrization, using Smagorinsky style sub-grid scale mixing in all three dimensions and a 1.5km simulations with two-dimensional Smagorinsky mixing. Of these, the 12km model produces a better match to the magnitude of the total cloud fraction but the 1.5km results in better timing for its peak value. The results suggest that the previously-reported improvement in the representation of the diurnal cycle of convective organisation in the 4km model compared to the standard 12km configuration is principally a result of the convection scheme employed rather than the improved resolution per se. The details of and implications for high-resolution model simulations are discussed.
Resumo:
SST errors in the tropical Atlantic are large and systematic in current coupled general-circulation models. We analyse the growth of these errors in the region of the south-eastern tropical Atlantic in initialised decadal hindcasts integrations for three of the models participating in the Coupled Model Inter-comparison Project 5. A variety of causes for the initial bias development are identified, but a crucial involvement is found, in all cases considered, of ocean-atmosphere coupling for their maintenance. These involve an oceanic “bridge” between the Equator and the Benguela-Angola coastal seas which communicates sub-surface ocean anomalies and constitutes a coupling between SSTs in the south-eastern tropical Atlantic and the winds over the Equator. The resulting coupling between SSTs, winds and precipitation represents a positive feedback for warm SST errors in the south-eastern tropical Atlantic.
Resumo:
A high resolution general circulation model has been used to study intense tropical storms. A five-year-long global integration with a spatial resolution of 125 km has been analysed. The geographical and seasonal distribution of tropical storms agrees remarkably well with observations. The structure of individual storms also agrees with observations, but the storms are generally more extensive in coverage and less extreme than the observed ones. A few additional calculations have also been done by a very high resolution limited-area version of the same model, where the boundary conditions successively have been interpolated from the global model. These results are very realistic in many details of the structure of the storms including simulated rain-bands and an eye structure. The global model has also been used in another five-year integration to study the influence of greenhouse warming. The sea surface temperatures have been taken from a transient climate change experiment carried out with a low resolution coupled ocean-atmosphere model. The result is a significant reduction in the number of hurricanes, particularly in the Southern Hemisphere. Main reasons for this can be found in changes in the largescale circulation, i.e. a weakening of the Hadley circulation, and a more intense warming of the upper tropical troposphere. A similar effect can be seen during warm ENSO events, where fewer North Atlantic hurricanes have been reported.
Resumo:
This work presents a description of the 1979–2002 tropical Atlantic (TA) SST variability modes coupled to the anomalous West African (WA) rainfall during the monsoon season. The time-evolving SST patterns, with an impact on WA rainfall variability, are analyzed using a new methodology based on maximum covariance analysis. The enhanced Climate Prediction Center (CPC) Merged Analysis of Precipitation (CMAP) dataset, which includes measures over the ocean, gives a complete picture of the interannual WA rainfall patterns for the Sahel dry period. The leading TA SST pattern, related to the Atlantic El Niño, is coupled to anomalous precipitation over the coast of the Gulf of Guinea, which corresponds to the second WA rainfall principal component. The thermodynamics and dynamics involved in the generation, development, and damping of this mode are studied and compared with previous works. The SST mode starts at the Angola/Benguela region and is caused by alongshore wind anomalies. It then propagates westward via Rossby waves and damps because of latent heat flux anomalies and Kelvin wave eastward propagation from an off-equatorial forcing. The second SST mode includes the Mediterranean and the Atlantic Ocean, showing how the Mediterranean SST anomalies are those that are directly associated with the Sahelian rainfall. The global signature of the TA SST patterns is analyzed, adding new insights about the Pacific– Atlantic link in relation to WA rainfall during this period. Also, this global picture suggests that the Mediterranean SST anomalies are a fingerprint of large-scale forcing. This work updates the results given by other authors, whose studies are based on different datasets dating back to the 1950s, including both the wet and the dry Sahel periods.
Resumo:
The objective of this work was to evaluate the feasibility of simulating maize yield in a sub‑tropical region of southern Brazil using the general large area model (Glam). A 16‑year time series of daily weather data were used. The model was adjusted and tested as an alternative for simulating maize yield at small and large spatial scales. Simulated and observed grain yields were highly correlated (r above 0.8; p<0.01) at large scales (greater than 100,000 km2), with variable and mostly lower correlations (r from 0.65 to 0.87; p<0.1) at small spatial scales (lower than 10,000 km2). Large area models can contribute to monitoring or forecasting regional patterns of variability in maize production in the region, providing a basis for agricultural decision making, and Glam‑Maize is one of the alternatives.
Resumo:
In response to a substantial weakening of the Atlantic Meridional Overturning Circulation (AMOC)— from a coupled ocean–atmosphere general circulation model experiment—significant changes in the interannual variability are found over the tropical Atlantic, characterized by an increase of variance (by ~150 %) in boreal late spring-early summer and a decrease of variance (by ~60 %) in boreal autumn. This study focuses on understanding physical mechanisms responsible for these changes in interannual variability in the tropical Atlantic. It demonstrates that the increase of variability in spring is a consequence of an increase in the variance of the El Niño-Southern Oscillation, which has a large impact on the tropical Atlantic via anomalous surface heat fluxes. Winter El Niño (La Niña) affects the eastern equatorial Atlantic by decreasing (increasing) cloud cover and surface wind speed which is associated with anomalous downward (upward) short wave radiation and reduced (enhanced) upward latent heat fluxes, creating anomalous positive (negative) sea surface temperature (SST) anomalies over the region from winter to spring. On the other hand, the decrease of SST variance in autumn is due to a deeper mean thermocline which weakens the impact of the thermocline movement on SST variation. The comparison between the model results and observations is not straightforward owing to the influence of model biases and the lack of a major MOC weakening event in the instrumental record. However, it is argued that the basic physical mechanisms found in the model simulations are likely to be robust and therefore have relevance to understanding tropical Atlantic variability in the real world, perhaps with modified seasonality.
The role of baroclinic waves in the initiation of tropical cyclones across the southern Indian Ocean
Resumo:
Cases where tropical storms are initiated simultaneously along one latitude are investigated. It is argued that such structure arises as part of a baroclinic wave. A case from February 2008 is examined using European Centre for Medium-Range Forecasts (ECMWF) analyses; the birth of three tropical cyclones in the low-level cyclonic regions to the east of upper-level troughs suggests that the wave was instrumental for initiation. Archived satellite imagery and storm warnings reveal that baroclinic waves over the southern Indian Ocean accompany tropical cyclogenesis twice a season on average, mainly in late summer, when breaking Rossby waves on the subtropical westerly jet are closest to the Intertropical Convergence Zone (ITCZ). Copyright © 2012 Royal Meteorological Society