953 resultados para TITANIUM-DIOXIDE FILMS
Resumo:
The objective of the thesis is to study cerium oxide thin films grown by the atomic layer deposition (ALD) for soot removal. Cerium oxide is one of the most important heterogeneous catalysts and can be used in particulate filters and sensors in a diesel exhaust pipe. Its redox/oxidation properties are a key factor in soot oxidation. Thus, the cerium oxide coating can help to keep particulate filters and sensors clean permanently. The literature part of the thesis focuses on the soot removal, introducing the origin and structure of soot, reviewing emissions standards for diesel particulate matter, and presenting methods and catalysts for soot removal. In the experimental part the optimal ALD conditions for cerium oxide were found, the structural properties of cerium oxide thin films were analyzed, and the catalytic activity of the cerium oxide for soot oxidation was investigated. Studying ALD growth conditions of cerium oxide films and determining their critical thickness range are important to maximize the catalytic performance operating at comparatively low temperature. It was found that the cerium oxide film deposited at 300 °C with 2000 ALD cycles had the highest catalytic activity. Although the activity was still moderate and did not decrease the soot oxidation temperature enough for a real-life application. The cerium oxide thin film deposited at 300 °C has a different crystal structure, surface morphology and elemental composition with a higher Ce3+ concentration compared to the films deposited at lower temperatures. The different properties of the cerium oxide thin film deposited at 300 °C increase the catalytic activity most likely due to higher surface area and addition of the oxygen vacancies.
Resumo:
The aim of the present study was to verify the sensitivity to the carbon dioxide (CO2) challenge test of panic disorder (PD) patients with respiratory and nonrespiratory subtypes of the disorder. Our hypothesis is that the respiratory subtype is more sensitive to 35% CO2. Twenty-seven PD subjects with or without agoraphobia were classified into respiratory and nonrespiratory subtypes on the basis of the presence of respiratory symptoms during their panic attacks. The tests were carried out in a double-blind manner using two mixtures: 1) 35% CO2 and 65% O2, and 2) 100% atmospheric compressed air, 20 min apart. The tests were repeated after 2 weeks during which the participants in the study did not receive any psychotropic drugs. At least 15 of 16 (93.7%) respiratory PD subtype patients and 5 of 11 (43.4%) nonrespiratory PD patients had a panic attack during one of two CO2 challenges (P = 0.009, Fisher exact test). Respiratory PD subtype patients were more sensitive to the CO2 challenge test. There was agreement between the severity of PD measured by the Clinical Global Impression (CGI) Scale and the subtype of PD. Higher CGI scores in the respiratory PD subtype could reflect a greater sensitivity to the CO2 challenge due to a greater severity of PD. Carbon dioxide challenges in PD may define PD subtypes and their underlying mechanisms.
Resumo:
In recent times the packaging industry is finding means to maximize profit. Wood used to be the most advantageous and everyday material for packaging, worktables, counters, constructions, interiors, tools and as materials and utensils in the food companies in the world. The use of wood has declined vigorously, and other materials like plastic, ceramic, stainless steel, concrete, and aluminum have taken its place. One way that the industry could reduce its cost is by finding possibilities of using wood for primary packaging after which it can be safely recycled or burned as a carbon source for energy. Therefore, the main objective of this thesis is to investigate the possibility of press-forming a wood film into primary packaging. In order to achieve the stated objectives, discussion on major characteristics of wood in terms of structure, types and application were studied. Two different wood species, pine and birch were used for the experimental work. These were provided by a local carpentry workshop in Lappeenranta and a workshop in Ruokolahti supervised by Professor Timo Kärki. Laboratory tests were carried out at Lappeenranta University of Technology FMS workshop on Stenhøj EPS40 M hydraulic C-frame press coupled with National Instruments VI Logger and on the Adjustable packaging line machine at LUT Packaging laboratory. The tests succeeded better on the LUT packaging line than on the Stenhoj equipment due to the integrated heating system in the machine. However, there is much work to be done before the quality of a tray produced from the wood film is comparable to that of the wood plastic composite tray.
Resumo:
Little is known about the barrier properties of polymer films during high pressure processing of prepackaged foods. In order to learn more about this, we examined the influence of high hydrostatic pressure on the permeation of raspberry ketone (dissolved in ethanol/water) through polyamide-6 films at temperatures between 20 and 60ºC. Permeation was lowered by increasing pressure at all temperatures. At 23°C, the increasing pressure sequence 0.1, 50, 100, 150, and 200 MPa correlated with the decreasing permeation coefficients P/(10(9) cm² s-1) of 6.2, 3.8, 3.0, 2.2, and 1.6. Analysis of the permeation kinetics indicated that this effect was due to a reduced diffusion coefficient. Pressure and temperature acted antagonistically to each other. The decrease in permeation at 200 MPa was compensated for by a temperature increase of 20ºC. After release of pressure, the former permeation coefficients were recovered, which suggests that this `pressure effect' is reversible. Taken together, our data revealed no detrimental effects of high hydrostatic pressure on the barrier properties of polymer films.
Resumo:
In literature CO 2 liquidization is well studied with steady state modeling. Steady state modeling gives an overview of the process but it doesn’t give information about process behavior during transients. In this master’s thesis three dynamic models of CO2 liquidization were made and tested. Models were straight multi-stage compression model and two compression liquid pumping models, one with and one without cold energy recovery. Models were made with Apros software, models were also used to verify that Apros is capable to model phase changes and over critical state of CO 2. Models were verified against compressor manufacturer’s data and simulation results presented in literature. From the models made in this thesis, straight compression model was found to be the most energy efficient and fastest to react to transients. Also Apros was found to be capable tool for dynamic liquidization modeling.
Resumo:
Carbon dioxide is regarded, nowadays, as a primary anthropogenic greenhouse gas leading to global warming. Hence, chemical fixation of CO2 has attracted much attention as a possible way to manufacture useful chemicals. One of the most interesting approaches of CO2 transformations is the synthesis of organic carbonates. Since conventional production technologies of these compounds involve poisonous phosgene and carbon monoxide, there is a need to develop novel synthetic methods that would better match the principles of "Green Chemistry" towards protection of the environment and human health. Over the years, synthesis of dimethyl carbonate was under intensive investigation in the academia and industry. Therefore, this study was entirely directed towards equally important homologue of carbonic esters family namely diethyl carbonate (DEC). Novel synthesis method of DEC starting from ethanol and CO2 over heterogeneous catalysts based on ceria (CeO2) was studied in the batch reactor. However, the plausible drawback of the reaction is thermodynamic limitations. The calculated values revealed that the reaction is exothermic (ΔrHØ298K = ─ 16.6 J/ ) and does not occur spontaneously at rooms temperature (ΔrGØ 298K = 35.85 kJ/mol). Moreover, co-produced water easily shifts the reaction equilibrium towards reactants excluding achievement of high yields of the carbonate. Therefore, in-situ dehydration has been applied using butylene oxide as a chemical water trap. A 9-fold enhancement in the amount of DEC was observed upon introduction of butylene oxide to the reaction media in comparison to the synthetic method without any water removal. This result confirms that reaction equilibrium was shifted in favour of the desired product and thermodynamic boundaries of the reaction were suppressed by using butylene oxide as a water scavenger. In order to obtain insight into the reaction network, the kinetic experiments were performed over commercial cerium oxide. On the basis of the selectivity/conversion profile it could be concluded that the one-pot synthesis of diethyl carbonate from ethanol, CO2 and butylene oxide occurs via a consecutive route involving cyclic carbonate as an intermediate. Since commercial cerium oxide suffers from the deactivation problems already after first reaction cycle, in-house CeO2 was prepared applying room temperature precipitation technique. Variation of the synthesis parameters such as synthesis time, calcination temperature and pH of the reaction solution turned to have considerable influence on the physico-chemical and catalytic properties of CeO2. The increase of the synthesis time resulted in high specific surface area of cerium oxide and catalyst prepared within 50 h exhibited the highest amount of basic sites on its surface. Furthermore, synthesis under pH 11 yielded cerium oxide with the highest specific surface area, 139 m2/g, among all prepared catalysts. Moreover, CeO2─pH11 catalyst demonstrated the best catalytic activity and 2 mmol of DEC was produced at 180 oC and 9 MPa of the final reaction pressure. In addition, ceria-supported onto high specific surface area silicas MCM-41, SBA-15 and silica gel were synthesized and tested for the first time as catalysts in the synthesis of DEC. Deposition of cerium oxide on MCM-41 and SiO2 supports resulted in a substantial increase of the alkalinity of the carrier materials. Hexagonal SBA-15 modified with 20 wt % of ceria exhibited the second highest basicity in the series of supported catalysts. Evaluation of the catalytic activity of ceria-supported catalysts showed that reaction carried out over 20 wt % CeO2-SBA-15 generated the highest amount of DEC.
Resumo:
Lappeenranta University of Technology School of Technology Technical Physics Evgenii Zhukov MAGNETIZATION STUDIES OF POLYSTYRENE/MULTIWALL CARBON NANOTUBE COMPOSITE FILMS Master’s thesis 2015 55 pages, 41 pictures, 9 Tables. Examiners: Professor Erkki Lähderanta D.Sc. Ivan Zakharchuk Keywords: polystyrene, multi-walled carbon nanotubes, MWCNT, composite, magnetization, SQUID. In this thesis magnetic properties of polystyrene/multiwall carbon nanotube (MWCNT) composites are investigated with Quantum Design SQUID magnetometer (MPMS XL). The surface of the composite films is studied via BRUKER Multimode 8 Atomic Force Microscope, as well. The polystyrene/MWCNT composites have been prepared by the group of professor Okotrub (Physics Chemistry of Nanomaterials laboratory, Nikolaev Institute of Inorganic Chemistry, Russia). The composite films have been prepared by solution processing and stretching method. The approximate length and inner diameter of the MWCNTs used in fabrication are 260 μm and 10 nm, respectively. The content of MWCNTs is 1 and 2.5 contents percent (wt%) for studied samples. The stretching of the samples is 30% for samples with 1 and 2.5 wt% content, and one sample with 1 wt% loading of MWCNTs is 100% stretched. MWCNTs aligned perpendicular to a silicon substrate are used as a reference sample. The magnetization field dependencies of the samples exhibit hysteresis behavior. The values of saturation magnetization of composite films are much less compared to that of the reference sample. The saturation magnetization coercitivity field value drops with decrease of MWCNT content. At high magnetic fields strong presence of diamagnetism is observed. Measurements in magnetic field parallel and perpendicular to the composite plate display anisotropy with respect to the direction of stretching. Temperature dependences of magnetization for all samples display difference between zero-field cooled and field-cooled curves of magnetization. This divergence confirms the presence of magnetic interactions in the material. The atomic force microscopy study of the composites’ surfaces revealed that they are relatively smooth and the nanotubes are aligned with the axis of stretching to some extent.
Resumo:
Bacteriorhodopsin (BR) is a light-sensitive protein, which is a promising material for various technical applications, such as photosensors. The quality of dry thick BR photosensors depends on few performance characteristics. Uniformity of parameters, which have the impact on such characteristics, should be maintained during the preparation or otherwise compensated afterwards. In this thesis, uniformity examination techniques were studied. Experimental setups, which operate, based on studied techniques, were designed. Experiments, which were conducted on constructed setups, revealed a list of dependencies between BR properties and allowed to evaluate properties of sensors.
Resumo:
There is a demonstrable association between exposure to air pollutants and deaths due to cardiovascular diseases. The objective of this study was to estimate the effects of exposure to sulfur dioxide on mortality due to circulatory diseases in individuals 50 years of age or older residing in São José dos Campos, SP. This was a time-series ecological study for the years 2003 to 2007 using information on deaths due to circulatory disease obtained from Datasus reports. Data on daily levels of pollutants, particulate matter, sulfur dioxide (SO2), ozone, temperature, and humidity were obtained from the São Paulo State Environmental Agency. Moving average models for 2 to 7 days were calculated by Poisson regression using the R software. Exposure to SO2 was analyzed using a unipollutant, bipollutant or multipollutant model adjusted for mean temperature and humidity. The relative risks with 95%CI were obtained and the percent decrease in risk was calculated. There were 1928 deaths with a daily mean (± SD) of 1.05 ± 1.03 (range: 0-6). Exposure to SO2 was significantly associated with mortality due to circulatory disease: RR = 1.04 (95%CI = 1.01 to 1.06) in the 7-day moving average, after adjusting for ozone. There was an 8.5% decrease in risk in the multipollutant model, proportional to a decrease of SO2 concentrations. The results of this study suggest that residents of medium-sized Brazilian cities with characteristics similar to those of São José dos Campos probably have health problems due to exposure to air pollutants.
Resumo:
A previous study showed that BMP-2 (bone morphogenetic protein-2) and wear debris can separately support osteoclast formation induced by the receptor activator of NF-κB ligand (RANKL). However, the effect of BMP-2 on wear debris-induced osteoclast formation is unclear. In this study, we show that neither titanium particles nor BMP-2 can induce osteoclast formation in RAW 264.7 mouse leukemic monocyte macrophage cells but that BMP-2 synergizes with titanium particles to enhance osteoclast formation in the presence of RANKL, and that at a low concentration, BMP-2 has an optimal effect to stimulate the size and number of multinuclear osteoclasts, expression of osteoclast genes, and resorption area. Our data also clarify that the effects caused by the increase in BMP-2 on phosphorylated SMAD levels such as c-Fos expression increased throughout the early stages of osteoclastogenesis. BMP-2 and titanium particles stimulate the expression of p-JNK, p-P38, p-IkB, and P50 compared with the titanium group. These data suggested that BMP-2 may be a crucial factor in titanium particle-mediated osteoclast formation.
Resumo:
Vapor-Liquid equilibria of palm fatty acids distillates/carbon dioxide system has been investigated experimentally at temperatures of 333, 353, and 373 K and pressures of 20, 23, 26, and 29 MPa using the static method. Experimental data for the quasi-binary system palm fatty acids distillates/carbon dioxide has been correlated with Redlich-Kwong-Aspen equation of state. Modeling shows good agreement with experimental data. Selectivity obtained indicates that supercritical carbon dioxide is a reasonable solvent for separating saturated (palmitic acid) and unsaturated (oleic+linoleic acids) fatty acids from palm fatty acids distillates in a continuous multistage countercurrent column.
Resumo:
In this work the separation of multicomponent mixtures in counter-current columns with supercritical carbon dioxide has been investigated using a process design methodology. First the separation task must be defined, then phase equilibria experiments are carried out, and the data obtained are correlated with thermodynamic models or empirical functions. Mutual solubilities, Ki-values, and separation factors aij are determined. Based on this data possible operating conditions for further extraction experiments can be determined. Separation analysis using graphical methods are performed to optimize the process parameters. Hydrodynamic experiments are carried out to determine the flow capacity diagram. Extraction experiments in laboratory scale are planned and carried out in order to determine HETP values, to validate the simulation results, and to provide new materials for additional phase equilibria experiments, needed to determine the dependence of separation factors on concetration. Numerical simulation of the separation process and auxiliary systems is carried out to optimize the number of stages, solvent-to-feed ratio, product purity, yield, and energy consumption. Scale-up and cost analysis close the process design. The separation of palmitic acid and (oleic+linoleic) acids from PFAD-Palm Fatty Acids Distillates was used as a case study.
Resumo:
The viscoelastic properties of edible films can provide information at the structural level of the biopolymers used. The objective of this work was to test three simple models of linear viscoelastic theory (Maxwell, Generalized Maxwell with two units in parallel, and Burgers) using the results of stress relaxation tests in edible films of myofibrillar proteins of Nile Tilapia. The films were elaborated according to a casting technique and pre-conditioned at 58% relative humidity and 22ºC for 4 days. The testing sample (15mm x 118mm) was submitted to tests of stress relaxation in an equipment of physical measurements, TA.XT2i. The deformation, imposed to the sample, was 1%, guaranteeing the permanency in the domain of the linear viscoelasticity. The models were fitted to experimental data (stress x time) by nonlinear regression. The Generalized Maxwell model with two units in parallel and the Burgers model represented the relaxation curves of stress satisfactorily. The viscoelastic properties varied in a way that they were less dependent on the thickness of the films.
Resumo:
Edible films based on gluten from four types of Brazilian wheat gluten (2 "semi-hard" and 2 "soft") were prepared and mechanical and barrier properties were compared with those of wheat gluten films with vital gluten. Water vapor, oxygen permeability, tensile strength and percent elongation at break, solubility in water and surface morphology were measured. The films from "semi-hard" wheat flours showed similar water vapor permeability and solubility in water to films from vital gluten and better tensile strength than the films from "soft" and vital gluten. The films from vital gluten had higher elongation at break and oxygen permeability and also lower solubility in water than the films from the Brazilian wheat "soft" flours. In spite of the vital gluten showed greater mechanical resistance, desirable for the bakery products, for the purpose of developing gluten films Brazilian "semi-hard" wheat flours can be used instead of vital gluten, since they showed similar barrier and mechanical properties.
Resumo:
The monitoring and control of hydrogen sulfide (H2S) level is of great interest for a wide range of application areas including food quality control, defense and antiterrorist applications and air quality monitoring e.g. in mines. H2S is a very poisonous and flammable gas. Exposure to low concentrations of H2S can result in eye irritation, a sore throat and cough, shortness of breath, and fluid retention in the lungs. These symptoms usually disappear in a few weeks. Long-term, low-level exposure may result in fatigue, loss of appetite, headache, irritability, poor memory, and dizziness. Higher concentrations of 700 - 800 ppm tend to be fatal. H2S has a characteristic smell of rotten egg. However, because of temporary paralysis of olfactory nerves, the smelling capability at concentrations higher than 100 ppm is severely compromised. In addition, volatile H2S is one of the main products during the spoilage of poultry meat in anaerobic conditions. Currently, no commercial H2S sensor is available which can operate under anaerobic conditions and can be easily integrated in the food packaging. This thesis presents a step-wise progress in the development of printed H2S gas sensors. Efforts were made in the formulation, characterization and optimization of functional printable inks and coating pastes based on composites of a polymer and a metal salt as well as a composite of a metal salt and an organic acid. Different processing techniques including inkjet printing, flexographic printing, screen printing and spray coating were utilized in the fabrication of H2S sensors. The dispersions were characterized by measuring turbidity, surface tension, viscosity and particle size. The sensing films were characterized using X-ray photoelectron spectroscopy, X-ray diffraction, atomic force microscopy and an electrical multimeter. Thin and thick printed or coated films were developed for gas sensing applications with the aim of monitoring the H2S concentrations in real life applications. Initially, a H2S gas sensor based on a composite of polyaniline and metal salt was developed. Both aqueous and solvent-based dispersions were developed and characterized. These dispersions were then utilized in the fabrication of roll-to-roll printed H2S gas sensors. However, the humidity background, long term instability and comparatively lower detection limit made these sensors less favourable for real practical applications. To overcome these problems, copper acetate based sensors were developed for H2S gas sensing. Stable inks with excellent printability were developed by tuning the surface tension, viscosity and particle size. This enabled the formation of inkjet-printed high quality copper acetate films with excellent sensitivity towards H2S. Furthermore, these sensors showed negligible humidity effects and improved selectivity, response time, lower limit of detection and coefficient of variation. The lower limit of detection of copper acetate based sensors was further improved to sub-ppm level by incorporation of catalytic gold nano-particles and subsequent plasma treatment of the sensing film. These sensors were further integrated in an inexpensive wirelessly readable RLC-circuit (where R is resistor, L is inductor and C is capacitor). The performance of these sensors towards biogenic H2S produced during the spoilage of poultry meat in the modified atmosphere package was also demonstrated in this thesis. This serves as a proof of concept that these sensors can be utilized in real life applications.