997 resultados para TECHNOLOGICAL PARAMETERS
Resumo:
Tunnel construction planning requires careful consideration of the spoil management part, as this involves environmental, economic and legal requirements. In this paper a methodological approach that considers the interaction between technical and geological factors in determining the features of the resulting muck is proposed. This gives indications about the required treatments as well as laboratory and field characterisation tests to be performed to assess muck recovery alternatives. While this reuse is an opportunity for excavations in good quality homogeneous grounds (e.g. granitic mass), it is critical for complex formation. This approach has been validated, at present, for three different geo-materials resulting from a tunnel excavation carried out with a large diameter Earth Pressure Balance Shield (EPB) through a complex geological succession. Physical parameters and technological features of the three materials have been assessed, according to their valorisation potential, for defining re-utilisation patterns. The methodology proved to be effective and the laboratory tests carried out on the three materials allowed the suitability and treatment effectiveness for each muck recovery strategy to be defined. © 2014 Elsevier Ltd.
Resumo:
Hidden Markov models (HMMs) are widely used models for sequential data. As with other probabilistic graphical models, they require the specification of precise probability values, which can be too restrictive for some domains, especially when data are scarce or costly to acquire. We present a generalized version of HMMs, whose quantification can be done by sets of, instead of single, probability distributions. Our models have the ability to suspend judgment when there is not enough statistical evidence, and can serve as a sensitivity analysis tool for standard non-stationary HMMs. Efficient inference algorithms are developed to address standard HMM usage such as the computation of likelihoods and most probable explanations. Experiments with real data show that the use of imprecise probabilities leads to more reliable inferences without compromising efficiency.
Resumo:
Technological learning refers to the learning processes involved in improving the productive capabilities of an enterprise, sector or economy to enable it to produce higher quality goods or services with increasing levels of efficiency. Approaches to the study of technological learning include case studies of particular countries, sectors and firms; measures of export sophistication; and composite indicators of innovation and competitiveness. The present review draws on these approaches to provide an overview of the policies and practices that have been successful in different regions (East-Asia and Latin America) ; contexts (import substitution and liberalization) ; sectors (pulp and paper, IT services, electronics and passenger cars); and firms (Embrear and Lenovo). While it is clear that there is strong complementarity between domestic technological capability and the ability to absorb foreign technology, there is no simple policy recipe which is appropriate for all times, industries or places. Technological learning builds on and is shaped by what is already known. It requires time, space and resources all of which are influenced by the wider domestic and international context. The current international context is challenging but countries and firms have to find ways of moving forward despite the limited strategy space.
Resumo:
We present the study of absolute magnitude (H) and slope parameter (G) of 170,000 asteroids observed by the Pan-STARRS1 telescope during the period of 15 months within its 3-year all-sky survey mission. The exquisite photometry with photometric errors below 0.04 mag and well-defined filter and photometric system allowed to derive H and G with statistical and systematic errors. Our new approach lies in the Monte Carlo technique simulating rotation periods, amplitudes, and colors, and deriving most-likely H, G and their systematic errors. Comparison of H_M by Muinonen's phase function (Muinonen et al., 2010) with the Minor Planet Center database revealed a negative offset of 0.22±0.29 meaning that Pan-STARRS1 asteroids are fainter. We showed that the absolute magnitude derived by Muinonen's function is systematically larger on average by 0.14±0.29 and by 0.30±0.16 when assuming fixed slope parameter (G=0.15, G_{12}=0.53) than Bowell's absolute magnitude (Bowell et al., 1989). We also derived slope parameters of asteroids of known spectral types and showed a good agreement with the previous studies within the derived uncertainties. However, our systematic errors on G and G_{12} are significantly larger than in previous work, which is caused by poor temporal and phase coverage of vast majority of the detected asteroids. This disadvantage will vanish when full survey data will be available and ongoing extended and enhanced mission will provide new data.
Resumo:
Background: Pedigree reconstruction using genetic analysis provides a useful means to estimate fundamental population biology parameters relating to population demography, trait heritability and individual fitness when combined with other sources of data. However, there remain limitations to pedigree reconstruction in wild populations, particularly in systems where parent-offspring relationships cannot be directly observed, there is incomplete sampling of individuals, or molecular parentage inference relies on low quality DNA from archived material. While much can still be inferred from incomplete or sparse pedigrees, it is crucial to evaluate the quality and power of available genetic information a priori to testing specific biological hypotheses. Here, we used microsatellite markers to reconstruct a multi-generation pedigree of wild Atlantic salmon (Salmo salar L.) using archived scale samples collected with a total trapping system within a river over a 10 year period. Using a simulation-based approach, we determined the optimal microsatellite marker number for accurate parentage assignment, and evaluated the power of the resulting partial pedigree to investigate important evolutionary and quantitative genetic characteristics of salmon in the system.
Results: We show that at least 20 microsatellites (ave. 12 alleles/locus) are required to maximise parentage assignment and to improve the power to estimate reproductive success and heritability in this study system. We also show that 1.5 fold differences can be detected between groups simulated to have differing reproductive success, and that it is possible to detect moderate heritability values for continuous traits (h(2) similar to 0.40) with more than 80% power when using 28 moderately to highly polymorphic markers.
Conclusion: The methodologies and work flow described provide a robust approach for evaluating archived samples for pedigree-based research, even where only a proportion of the total population is sampled. The results demonstrate the feasibility of pedigree-based studies to address challenging ecological and evolutionary questions in free-living populations, where genealogies can be traced only using molecular tools, and that significant increases in pedigree assignment power can be achieved by using higher numbers of markers.
Resumo:
A new technological approach in the analysis and forensic interpretation of Total Hydrocarbons in soils and waters using 2D Gas Chromatography method (GC-GC) was developed alongside environmental forensic and the assessment models to provide better customer products for the environmental industry.
The objective was to develop an analytical methodology for TPH CWG. Raw data from this method is then to be evaluated for forensic interpretation and risk assessment modelling. Access will be made available to the expertise in methods of forensic tracing contaminant sources, transport modelling, human health risk modelling and detailed quantitative risk assessment.
The quantification of internal standards was key to the development of this method. As the laboratory does not test for TPH in 1D, it was requested during INAB ISO 17025 audit to individually map out where each compound falls chromatographically in the 2D. This was done through comparing carbon equivalent numbers to the n-alkane carbons. This proved e.g. 2-methylnaphthalene has 11 carbons in its structure; its carbon equivalent is 12.84 , the result of which falls within the band of Aromatic eC12-eC16 as opposed to expected eC10-eC12. This was carried out for all 16 PAH (polyaromatic hydrocarbons) and BTEX (benzene, toluene, ethylbenzene and o, m and p-xylenes). The n-alkanes were also assigned to their corresponding aliphatic bands e.g. nC8 would be expected to be in nC8-nC10.
The method was validated through a designated systematic experimental protocol and was challenged with spikes of known concentration of hydrocarbon parameters such as recoveries, precision, bias and linearity. The method was verified by testing a certified reference material which was used as a proficiency round of testing for numerous laboratories.
It is hoped that the method will be used in conjunction with the analysis through Bonn Agreement with their OSINet group. This is a panel of experts and laboratories (including CLS) who forensically identify oil spill contamination from a water source.
This method can prove itself to be a robust method and benefit the industry for contaminated land and water but the method needs to be seen as separate from the regular 1D chromatography. It will help identify contaminants and assist consultants, regulators, clients and scientists valuable information not seen in 1D
Resumo:
We present the results of a Monte Carlo technique to calculate the absolute magnitudes (H) and slope parameters (G) of about 240,000 asteroids observed by the Pan-STARRS1 telescope during the first 15 months of its 3-year all-sky survey mission. The system's exquisite photometry with photometric errors asteroids rotation period, amplitude and color to derive the most-likely H and G, but its major advantage is in estimating realistic statistical+systematic uncertainties and errors on each parameter. The method was confirmed by comparison with the well-established and accurate results for about 500 asteroids provided by Pravec et al. (2012) and then applied to determining H and G for the Pan-STARRS1 asteroids using both the Muinonen et al. (2010) and Bowell et al. (1989) phase functions. Our results confirm the bias in MPC photometry discovered by ( Jurić et al., 2002).
Resumo:
Clean and renewable energy generation and supply has drawn much attention worldwide in recent years, the proton exchange membrane (PEM) fuel cells and solar cells are among the most popular technologies. Accurately modeling the PEM fuel cells as well as solar cells is critical in their applications, and this involves the identification and optimization of model parameters. This is however challenging due to the highly nonlinear and complex nature of the models. In particular for PEM fuel cells, the model has to be optimized under different operation conditions, thus making the solution space extremely complex. In this paper, an improved and simplified teaching-learning based optimization algorithm (STLBO) is proposed to identify and optimize parameters for these two types of cell models. This is achieved by introducing an elite strategy to improve the quality of population and a local search is employed to further enhance the performance of the global best solution. To improve the diversity of the local search a chaotic map is also introduced. Compared with the basic TLBO, the structure of the proposed algorithm is much simplified and the searching ability is significantly enhanced. The performance of the proposed STLBO is firstly tested and verified on two low dimension decomposable problems and twelve large scale benchmark functions, then on the parameter identification of PEM fuel cell as well as solar cell models. Intensive experimental simulations show that the proposed STLBO exhibits excellent performance in terms of the accuracy and speed, in comparison with those reported in the literature.
Resumo:
The aim of this article was to construct a T–ϕ phase diagram for a model drug (FD) and amorphous polymer (Eudragit® EPO) and to use this information to understand the impact of how temperature–composition coordinates influenced the final properties of the extrudate. Defining process boundaries and understanding drug solubility in polymeric carriers is of utmost importance and will help in the successful manufacture of new delivery platforms for BCS class II drugs. Physically mixed felodipine (FD)–Eudragit® EPO (EPO) binary mixtures with pre-determined weight fractions were analysed using DSC to measure the endset of melting and glass transition temperature. Extrudates of 10 wt% FD–EPO were processed using temperatures (110°C, 126°C, 140°C and 150°C) selected from the temperature–composition (T–ϕ) phase diagrams and processing screw speed of 20, 100 and 200rpm. Extrudates were characterised using powder X-ray diffraction (PXRD), optical, polarised light and Raman microscopy. To ensure formation of a binary amorphous drug dispersion (ADD) at a specific composition, HME processing temperatures should at least be equal to, or exceed, the corresponding temperature value on the liquid–solid curve in a F–H T–ϕ phase diagram. If extruded between the spinodal and liquid–solid curve, the lack of thermodynamic forces to attain complete drug amorphisation may be compensated for through the use of an increased screw speed. Constructing F–H T–ϕ phase diagrams are valuable not only in the understanding drug–polymer miscibility behaviour but also in rationalising the selection of important processing parameters for HME to ensure miscibility of drug and polymer.