1000 resultados para Supramolecular association


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Variations in the interleukin 4 receptor A (IL4RA) gene have been reported to be associated with atopy, asthma, and allergy, which may occur less frequently in subjects with type 1 diabetes (T1D). Since atopy shows a humoral immune reactivity pattern, and T1D results from a cellular (T lymphocyte) response, we hypothesised that alleles predisposing to atopy could be protective for T1D and transmitted less often than the expected 50% from heterozygous parents to offspring with T1D. We genotyped seven exonic single nucleotide polymorphisms (SNPs) and the -3223 C>T SNP in the putative promoter region of IL4RA in up to 3475 T1D families, including 1244 Finnish T1D families. Only the -3223 C>T SNP showed evidence of negative association (P=0.014). There was some evidence for an interaction between -3233 C>T and the T1D locus IDDM2 in the insulin gene region (P=0.001 in the combined and P=0.02 in the Finnish data set). We, therefore, cannot rule out a genetic effect of IL4RA in T1D, but it is not a major one.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ammonia synthesis on three metal surfaces (Zr, Ru, and Pd) is investigated using density functional theory calculations. In addition to N-2 dissociation, all the transition states of the hydrogenation reactions from N to NH3 are located and the reaction energy profiles at both low and high surface coverages are compared and analyzed. The following are found: (i) Surface coverage effect on dissociation reactions is more significant than that on association reactions. (ii) The difference between N and H chemisorption energies, the so-called chemisorption energy gap which is a measure of adsorption competition, is vital to the reactivity of the catalysts. (iii) The hydrogenation barriers can considerably affect the overall rate of ammonia synthesis. A simple model to describe the relationship between dissociation and association reactions is proposed. (c) 2007 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hydrogenation reaction, as one of the simplest association reactions on surfaces, is of great importance both scientifically and technologically. They are essential steps in many industrial processes in heterogeneous catalysis, such as ammonia synthesis (N-2+3H(2)-->2NH(3)). Many issues in hydrogenation reactions remain largely elusive. In this work, the NHx (x=0,1,2) hydrogenation reactions (N+H-->NH, NH+H-->NH2 and NH2+H-->NH3) on Rh(111) are used as a model system to study the hydrogenation reactions on metal surfaces in general using density-functional theory. In addition, C and O hydrogenation (C+H-->CH and O+H-->OH) and several oxygenation reactions, i.e., C+O, N+O, O+O reactions, are also calculated in order to provide a further understanding of the barrier of association reactions. The reaction pathways and the barriers of all these reactions are determined and reported. For the C, N, NH, and O hydrogenation reactions, it is found that there is a linear relationship between the barrier and the valency of R (R=C, N, NH, and O). Detailed analyses are carried out to rationalize the barriers of the reactions, which shows that: (i) The interaction energy between two reactants in the transition state plays an important role in determining the trend in the barriers; (ii) there are two major components in the interaction energy: The bonding competition and the direct Pauli repulsion; and (iii) the Pauli repulsion effect is responsible for the linear valency-barrier trend in the C, N, NH, and O hydrogenation reactions. For the NH2+H reaction, which is different from other hydrogenation reactions studied, the energy cost of the NH2 activation from the IS to the TS is the main part of the barrier. The potential energy surface of the NH2 on metal surfaces is thus crucial to the barrier of NH2+H reaction. Three important factors that can affect the barrier of association reactions are generalized: (i) The bonding competition effect; (ii) the local charge densities of the reactants along the reaction direction; and (iii) the potential energy surface of the reactants on the surface. The lowest energy pathway for a surface association reaction should correspond to the one with the best compromise of these three factors. (C) 2003 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aims/hypothesis: Diabetic nephropathy, characterised by persistent proteinuria, hypertension and progressive kidney failure, affects a subset of susceptible individuals with diabetes. It is also a leading cause of end-stage renal disease (ESRD). Non-synonymous (ns) single nucleotide polymorphisms (SNPs) have been reported to contribute to genetic susceptibility in both monogenic disorders and common complex diseases. The objective of this study was to investigate whether nsSNPs are involved in susceptibility to diabetic nephropathy using a case-control design.

Methods: White type 1 diabetic patients with (cases) and without (controls) nephropathy from eight centres in the UK and Ireland were genotyped for a selected subset of nsSNPs using Illumina's GoldenGate BeadArray assay. A ? 2 test for trend, stratified by centre, was used to assess differences in genotype distribution between cases and controls. Genomic control was used to adjust for possible inflation of test statistics, and the False Discovery Rate method was used to account for multiple testing.

Results: We assessed 1,111 nsSNPs for association with diabetic nephropathy in 1,711 individuals with type 1 diabetes (894 cases, 817 controls). A number of SNPs demonstrated a significant difference in genotype distribution between groups before but not after correction for multiple testing. Furthermore, neither subgroup analysis (diabetic nephropathy with ESRD or diabetic nephropathy without ESRD) nor stratification by duration of diabetes revealed any significant differences between groups.

Conclusions/interpretation: The nsSNPs investigated in this study do not appear to contribute significantly to the development of diabetic nephropathy in patients with type 1 diabetes.