986 resultados para Stress component


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The thermodynamic functions of a Fermi gas with spin population imbalance are studied in the temperature-asymmetry plane in the BCS limit. The low-temperature domain is characterized by an anomalous enhancement of the entropy and the specific heat above their values in the unpaired state, decrease of the gap and eventual unpairing phase transition as the temperature is lowered. The unpairing phase transition induces a second jump in the specific heat, which can be measured in calorimetric experiments. While the superfluid is unstable against a supercurrent carrying state, it may sustain a metastable state if cooled adiabatically down from the stable high-temperature domain. In the latter domain the temperature dependence of the gap and related functions is analogous to the predictions of the BCS theory.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Endoplasmic reticulum (ER) homeostasis alteration contributes to pancreatic β-cell dysfunction and death and favors the development of diabetes. In this study, we demonstrate that HDLs protect β-cells against ER stress induced by thapsigargin, cyclopiazonic acid, palmitate, insulin overexpression, and high glucose concentrations. ER stress marker induction and ER morphology disruption mediated by these stimuli were inhibited by HDLs. Using a temperature-sensitive viral glycoprotein folding mutant, we show that HDLs correct impaired protein trafficking and folding induced by thapsigargin and palmitate. The ability of HDLs to protect β-cells against ER stress was inhibited by brefeldin A, an ER to Golgi trafficking blocker. These results indicate that HDLs restore ER homeostasis in response to ER stress, which is required for their ability to promote β-cell survival. This study identifies a cellular mechanism mediating the beneficial effect of HDLs on β-cells against ER stress-inducing factors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We explore the phase diagram of a two-component ultracold atomic Fermi gas interacting with zero-range forces in the limit of weak coupling. We focus on the dependence of the pairing gap and the free energy on the variations in the number densities of the two species while the total density of the system is held fixed. As the density asymmetry is increased, the system exhibits a transition from a homogenous Bardeen-Cooper-Schrieffer (BCS) phase to phases with spontaneously broken global space symmetries. One such realization is the deformed Fermi surface superfluidity (DFS) which exploits the possibility of deforming the Fermi surfaces of the species into ellipsoidal form at zero total momentum of Cooper pairs. The critical asymmetries at which the transition from DFS to the unpaired state occurs are larger than those for the BCS phase. In this precritical region the DFS phase lowers the pairing energy of the asymmetric BCS state. We compare quantitatively the DFS phase to another realization of superconducting phases with broken translational symmetry: the single-plane-wave Larkin-Ovchinnikov-Fulde-Ferrell phase, which is characterized by a nonvanishing center-of-mass momentum of the Cooper pairs. The possibility of the detection of the DFS phase in the time-of-flight experiments is discussed and quantified for the case of 6Li atoms trapped in two different hyperfine states.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Under field conditions, thermal diffusivity can be estimated from soil temperature data but also from the properties of soil components together with their spatial organization. We aimed to determine soil thermal diffusivity from half-hourly temperature measurements in a Rhodic Kanhapludalf, using three calculation procedures (the amplitude ratio, phase lag and Seemann procedures), as well as from soil component properties, for a comparison of procedures and methods. To determine thermal conductivity for short wave periods (one day), the phase lag method was more reliable than the amplitude ratio or the Seemann method, especially in deeper layers, where temperature variations are small. The phase lag method resulted in coherent values of thermal diffusivity. The method using properties of single soil components with the values of thermal conductivity for sandstone and kaolinite resulted in thermal diffusivity values of the same order. In the observed water content range (0.26-0.34 m³ m-3), the average thermal diffusivity was 0.034 m² d-1 in the top layer (0.05-0.15 m) and 0.027 m² d-1 in the subsurface layer (0.15-0.30 m).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

One of the largest strawberry-producing municipalities of Rio Grande do Sul (RS) is Turuçu, in the South of the State. The strawberry production system adopted by farmers is similar to that used in other regions in Brazil and in the world. The main difference is related to the soil management, which can change the soil chemical properties during the strawberry cycle. This study had the objective of assessing the spatial and temporal distribution of soil fertility parameters using principal component analysis (PCA). Soil sampling was based on topography, dividing the field in three thirds: upper, middle and lower. From each of these thirds, five soil samples were randomly collected in the 0-0.20 m layer, to form a composite sample for each third. Four samples were taken during the strawberry cycle and the following properties were determined: soil organic matter (OM), soil total nitrogen (N), available phosphorus (P) and potassium (K), exchangeable calcium (Ca) and magnesium (Mg), soil pH (pH), cation exchange capacity (CEC) at pH 7.0, soil base (V%) and soil aluminum saturation(m%). No spatial variation was observed for any of the studied soil fertility parameters in the strawberry fields and temporal variation was only detected for available K. Phosphorus and K contents were always high or very high from the beginning of the strawberry cycle, while pH values ranged from very low to very high. Principal component analysis allowed the clustering of all strawberry fields based on variables related to soil acidity and organic matter content.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chemical pollution is known to affect microbial community composition but it is poorly understood how toxic compounds influence physiology of single cells that may lay at the basis of loss of reproductive fitness. Here we analyze physiological disturbances of a variety of chemical pollutants at single cell level using the bacterium Pseudomonas fluorescens in an oligotrophic growth assay. As a proxy for physiological disturbance we measured changes in geometric mean ethidium bromide (EB) fluorescence intensities in subpopulations of live and dividing cells exposed or not exposed to different dosages of tetradecane, 4-chlorophenol, 2-chlorobiphenyl, naphthalene, benzene, mercury chloride, or water-dissolved oil fractions. Because ethidium bromide efflux is an energy-dependent process any disturbance in cellular energy generation is visible as an increased cytoplasmic fluorescence. Interestingly, all pollutants even at the lowest dosage of 1 nmol/mL culture produced significantly increased ethidium bromide fluorescence compared to nonexposed controls. Ethidium bromide fluorescence intensities increased upon pollutant exposure dosage up to a saturation level, and were weakly (r(2) = 0.3905) inversely correlated to the proportion of live cells at that time point in culture. Temporal increase in EB fluorescence of growing cells is indicative for toxic but reversible effects. Cells displaying high continued EB fluorescence levels experience constant and permanent damage, and no longer contribute to population growth. The procedure developed here using bacterial ethidium bromide efflux pump activity may be a useful complement to screen sublethal toxicity effects of chemicals.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Birds exhibit exceptional longevity and are thus regarded as a convenient model to study the intrinsic mechanisms of aging. The oxidative stress theory of aging suggests that individuals age because molecules, cells, tissues, organs, and, ultimately, animals accumulate oxidative damage over time. Accumulation of damage progressively reduces the level of antioxidant defences that are expected to decline with age. To test this theory, we measured the resistance of red blood cells to free radical attack in a captive population of greater flamingo (Phoenicopterus ruber roseus) of known age ranging from 0.3 to 45 years. We observed a convex relationship with young adults (12-20 years old) having greater resistance to oxidative stress than immature flamingos (5 months old) and old flamingos (30-45 years old). Our results suggest that the antioxidant detoxifying system must go through a maturation process before being completely functional. It then declines in older adults, supporting the oxidative theory of aging. Oxidative stress could hence play a significant role in shaping the pattern of senescence in a very long-lived bird species.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Airborne microbial products have been reported to promote immune responses that suppress asthma, yet how these beneficial effects take place remains controversial and poorly understood. We have found that pulmonary exposure with the bacterium Escherichia coli leads to a suppression of allergic airway inflammation, characterized by reduced airway-hyperresponsiveness, eosinophilia and cytokine production by T cells in the lung. This immune modulation was neither mediated by the induction of a Th1 response nor regulatory T cells; was dependent on TLR-4 but did not involve TLR-desensitization. Dendritic cell migration to the draining lymph nodes and subsequent activation of T cells was unaffected by prior exposure to E.coli indicating that the immunomodulation was limited to the lung environment. In non-treated control mice ovalbumin was primarily presented by airway CD11b+ CD11c+ DCs expressing high levels of MHC class II molecules whilst the DCs in E.coli-treated mice displayed a less activated phenotype and had impaired antigen presentation capacity. Consequently, in situ Th2 cytokine production by ovalbuminspecific effector T cells recruited to the airways was significantly reduced. The suppression of airways hyper responsiveness was mediated through the recruitment of IL-17-producing gd-T cells; however, the suppression of dendritic cells and T cells was mediated through a distinct mechanism that could not be overcome by the local administration of activated dendritic cells, or by the in vivo administration of TNF-alpha. Taken together, these data reveal a novel multi-component immunoregulatory pathway that acts to protect the airways from allergic inflammation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Selostus: Kohonneen hiilidioksidipitoisuuden, lämpötilan ja kuivuuden vaikutus nurmikasveihin

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Members of the genus Sphingomonas are important catalysts for removal of polycyclic aromatic hydrocarbons (PAHs) in soil, but their activity can be affected by various stress factors. This study examines the physiological and genome-wide transcription response of the phenanthrene-degrading Sphingomonas sp. strain LH128 in biofilms to solute stress (invoked by 450 mM NaCl solution), either as an acute (4-h) or a chronic (3-day) exposure. The degree of membrane fatty acid saturation was increased as a response to chronic stress. Oxygen consumption in the biofilms and phenanthrene mineralization activities of biofilm cells were, however, not significantly affected after imposing either acute or chronic stress. This finding was in agreement with the transcriptomic data, since genes involved in PAH degradation were not differentially expressed in stressed conditions compared to nonstressed conditions. The transcriptomic data suggest that LH128 adapts to NaCl stress by (i) increasing the expression of genes coping with osmolytic and ionic stress such as biosynthesis of compatible solutes and regulation of ion homeostasis, (ii) increasing the expression of genes involved in general stress response, (iii) changing the expression of general and specific regulatory functions, and (iv) decreasing the expression of protein synthesis such as proteins involved in motility. Differences in gene expression between cells under acute and chronic stress suggest that LH128 goes through changes in genome-wide expression to fully adapt to NaCl stress, without significantly changing phenanthrene degrading activity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Many inflammatory and infectious diseases are characterized by the activation of signaling pathways steaming from the endoplasmic reticulum (ER). These pathways, primarily associated with loss of ER homeostasis, are emerging as key regulators of inflammation and infection. Recent advances shed light on the mechanisms linking ER-stress and immune responses.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Different types of NPs (nanoparticles) are currently under development for diagnostic and therapeutic applications in the biomedical field, yet our knowledge about their possible effects and fate in living cells is still limited. In the present study, we examined the cellular response of human brain-derived endothelial cells to NPs of different size and structure: uncoated and oleic acid-coated iron oxide NPs (8-9 nm core), fluorescent 25 and 50 nm silica NPs, TiO2 NPs (21 nm mean core diameter) and PLGA [poly(lactic-co-glycolic acid)]-PEO [poly(ethylene oxide)] polymeric NPs (150 nm). We evaluated their uptake by the cells, and their localization, generation of oxidative stress and DNA-damaging effects in exposed cells. We show that NPs are internalized by human brain-derived endothelial cells; however, the extent of their intracellular uptake is dependent on the characteristics of the NPs. After their uptake by human brain-derived endothelial cells NPs are transported into the lysosomes of these cells, where they enhance the activation of lysosomal proteases. In brain-derived endothelial cells, NPs induce the production of an oxidative stress after exposure to iron oxide and TiO2 NPs, which is correlated with an increase in DNA strand breaks and defensive mechanisms that ultimately induce an autophagy process in the cells.