928 resultados para Stimmer, Tobias, 1539-1584.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Background: Centromeres are essential for chromosome segregation, yet their DNA sequences evolve rapidly. In most animals and plants that have been studied, centromeres contain megabase-scale arrays of tandem repeats. Despite their importance, very little is known about the degree to which centromere tandem repeats share common properties between different species across different phyla. We used bioinformatic methods to identify high-copy tandem repeats from 282 species using publicly available genomic sequence and our own data.Results: Our methods are compatible with all current sequencing technologies. Long Pacific Biosciences sequence reads allowed us to find tandem repeat monomers up to 1,419 bp. We assumed that the most abundant tandem repeat is the centromere DNA, which was true for most species whose centromeres have been previously characterized, suggesting this is a general property of genomes. High-copy centromere tandem repeats were found in almost all animal and plant genomes, but repeat monomers were highly variable in sequence composition and length. Furthermore, phylogenetic analysis of sequence homology showed little evidence of sequence conservation beyond approximately 50 million years of divergence. We find that despite an overall lack of sequence conservation, centromere tandem repeats from diverse species showed similar modes of evolution.Conclusions: While centromere position in most eukaryotes is epigenetically determined, our results indicate that tandem repeats are highly prevalent at centromeres of both animal and plant genomes. This suggests a functional role for such repeats, perhaps in promoting concerted evolution of centromere DNA across chromosomes.
Resumo:
Introduction: Recently, case reports have shown that immature teeth diagnosed with necrotic pulp and periapical periodontitis can be repaired through a regenerative endodontic procedure. True regeneration depends on the presence of stem cells in the remaining vital tissues. The aim of this study was to evaluate the histologic condition of the pulp tissue, root apical papilla, and periapical tissues after inducing endodontic infection in immature rat teeth for different periods. Methods: This study evaluated 18 first upper rat molars (36 roots). Periapical lesions were induced and were confirmed radiographically, and the animals were divided into 3 groups according to the days of pulp exposure for endodontic infection induction: 30, 60, and 90 days. Histologic analysis was performed in 5 different areas (ie, cervical, middle, and apical root canal thirds; the apical papilla; and the periapex surrounding the apical papilla). Results: At 30 days, one third of the specimens still showed vital but intensely inflamed pulp tissue in the apical third and vital apical papilla with varying degrees of inflammation. After 60 days, the results were similar with respect to the apical pulp tissue and apical papilla. Completely necrotic pulp tissue in the space canal and vital apical papilla were observed in about 67% of the cases after 90 days. Conclusions: Vital pulp tissue was observed in the apical third until 60 days and in the vital apical papilla until 90 days of infection in a rat model.
Resumo:
The objective of this study was to evaluate the coverage of spray droplets on coffee plants as well as their deposition using a sprayer with and without adaptation of an auxiliary branch for tall plants. The experiment was conducted following a randomized block design with six treatments and four replications to evaluate the percentage of coverage for the spraying liquids in water sensitive paper fixed at four quadrants and two heights (lower and upper) of the plants, and the spray deposit with metallic marker (MnSO4) on sheets in the same positions of the water sensitive paper in two spray volumes (450 and 750 L h(-1)). The experiment was conducted in October 2011 in the town of Patroc nio-MG, and the experimental plots consisted of 30 plants of Catua IAC-99, with approximately 12 years of age and average height of 3.50 meters. The experiments were conducted following a randomized block design with six treatments and four replications to evaluate the coverage and deposition, in two spray volumes (450 and 750 L ha(-1)). Leaves were collected in four positions and also at the top four in the lower canopy. The results of the evaluations were analysed statistically by F test and for comparison of means by Tukey test at 5% probability. The auxiliary branch installed at the rear of the equipment is the most suitable when compared to use of equipment without this feature or installed in the front of the equipment. Furthermore, the application volume of 450 L ha(-1) results in coverages and deposits of spraying liquids equivalents to volume of 750 L ha(-1), considered sufficient according to the parameters evaluated.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This paper addresses the problem of finite-time synchronization of tunnel diode based chaotic oscillators. After a brief investigation of its chaotic dynamics, we propose an active adaptive feedback coupling which accomplishes the synchronization of tunnel-diode-based chaotic systems with and without the presence of delay(s), basing ourselves on Lyapunov and on Krasovskii-Lyapunov stability theories. This feedback coupling could be applied to many other chaotic systems. A finite horizon can be arbitrarily established by ensuring that chaos synchronization is achieved at a pre-established time. An advantage of the proposed feedback coupling is that it is simple and easy to implement. Both mathematical investigations and numerical simulations followed by PSPICE experiment are presented to show the feasibility of the proposed method.
Resumo:
The evolution of surface water waves in finite depth under wind forcing is reduced to an antidissipative Korteweg-de Vries-Burgers equation. We exhibit its solitary wave solution. Antidissipation accelerates and increases the amplitude of the solitary wave and leads to blow-up and breaking. Blow-up occurs in finite time for infinitely large asymptotic space so it is a nonlinear, dispersive, and antidissipative equivalent of the linear instability which occurs for infinite time. Due to antidissipation two given arbitrary and adjacent planes of constant phases of the solitary wave acquire different velocities and accelerations inducing breaking. Soliton breaking occurs in finite space in a time prior to the blow-up. We show that the theoretical growth in amplitude and the time of breaking are both testable in an existing experimental facility.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)