947 resultados para Steel structures
Resumo:
The dipole patterns in the ferroelectric and antiferroelectric structures are drawn according to experimentally determined symmetry changes in the ferroelectrics and antiferroelectrics. For the ferroelectrics the dipoles of the unit cells for one domain are oriented in parallel and the directions of the polarisation in the adjacent domains are at definite angles to each other. It is assumed for the antiferroelectrics, that the superstructural unit cell is formed by the adjacent cells of the paraelectrical modification; the subcells having the antiparallel directions of the polarisation. It is these superstructural cells of the antiferroelectrics that are determined during the experimental investigations of the antiferroelectrics. The superstructural cells of the adjacent domains are different. In one case, the difference is that in the adjacent domains, the directions of the polarisation in the subcells form an angle (e.g., in PbZrO3). In other cases the superstructural cells have not only different directions of the polarisation in the subcells but different signs of the enantiomorphism (e.g., NH4H2PO4). In the third case, the only difference is that the superstructural unit cells in the adjacent domains are turned by an angle to each other round the direction of the subcell polarisation [e.g., (NH4)2H3IO6], etc.
Resumo:
An E-plane serpentine folded-waveguide slow-wave structure with ridge loading on one of its broad walls is proposed for broadband traveling-wave tubes (TWTs) and studied using a simple quasi-transverse-electromagnetic analysis for the dispersion and interaction impedance characteristics, including the effects of the beam-hole discontinuity. The results are validated against cold test measurements, an approximate transmission-line parametric analysis, an equivalent circuit analysis, and 3-D electromagnetic modeling using CST Microwave Studio. The effect of the structure parameters on widening the bandwidth of a TWT is also studied.
Resumo:
Surface topography has been known to play an important role in the friction and transfer layer formation during sliding. In the present investigation, EN8 steel flats were ground to attain different surface roughness with unidirectional grinding marks. Pure Mg pins were scratched on these surfaces using an Inclined Scratch Tester to study the influence of directionality of surface grinding marks on coefficient of friction and transfer layer formation. Grinding angle (i.e., the angle between direction of scratch and grinding marks) was varied between 0 degrees and 90 degrees during the tests. Experiments were conducted under both dry and lubricated conditions. Scanning electron micrographs of the contact surfaces of pins and flats were used to reveal the surface features that included the morphology of the transfer layer. It was observed that the average coefficient of friction and transfer layer formation depend primarily on the directionality of the grinding marks but were independent of surface roughness on the harder mating surface. In addition, a stick-slip phenomenon was observed, the amplitude of which depended both on the directionality of grinding marks and the surface roughness of the harder mating surface. The grinding angle effect on the coefficient of friction, which consists of adhesion and plowing components, was attributed to the variation of plowing component of friction. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
The sequence specificity of the recombination activating gene (RAG) complex during V(D)J recombination has been well studied. RAGs can also act as structure-specific nuclease; however, little is known about the mechanism of its action. Here, we show that in addition to DNA structure, sequence dictates the pattern and efficiency of RAG cleavage on altered DNA structures. Cytosine nucleotides are preferentially nicked by RAGs when present at single-stranded regions of heteroduplex DNA. Although unpaired thymine nucleotides are also nicked, the efficiency is many fold weaker. Induction of single- or double-strand breaks by RAGs depends on the position of cytosines and whether it is present on one or both of the strands. Interestingly, RAGs are unable to induce breaks when adenine or guanine nucleotides are present at single-strand regions. The nucleotide present immediately next to the bubble sequence could also affect RAG cleavage. Hence, we propose “C(d)C(S)C(S)” (d, double-stranded; s, single-stranded) as a consensus sequence for RAG-induced breaks at single-/double-strand DNA transitions. Such a consensus sequence motif is useful for explaining RAG cleavage on other types of DNA structures described in the literature. Therefore, the mechanism of RAG cleavage described here could explain facets of chromosomal rearrangements specific to lymphoid tissues leading to genomic instability.
Resumo:
Aspects of large-scale organized structures in sink flow turbulent and reverse-transitional boundary layers are studied experimentally using hot-wire anemometry. Each of the present sink flow boundary layers is in a state of 'perfect equilibrium' or 'exact self-preservation' in the sense of Townsend (The Structure of Turbulent Shear Flow, 1st and 2nd edns, 1956, 1976, Cambridge University Press) and Rotta (Progr. Aeronaut. Sci., vol. 2, 1962, pp. 1-220) and conforms to the notion of 'pure wall-flow' (Coles, J. Aerosp. Sci., vol. 24, 1957, pp. 495-506), at least for the turbulent cases. It is found that the characteristic inclination angle of the structure undergoes a systematic decrease with the increase in strength of the streamwise favourable pressure gradient. Detectable wall-normal extent of the structure is found to be typically half of the boundary layer thickness. Streamwise extent of the structure shows marked increase as the favourable pressure gradient is made progressively severe. Proposals for the typical eddy forms in sink flow turbulent and reverse-transitional flows are presented, and the possibility of structural self-organization (i.e. individual hairpin vortices forming streamwise coherent hairpin packets) in these flows is also discussed. It is further indicated that these structural ideas may be used to explain, from a structural viewpoint, the phenomenon of soft relaminarization or reverse transition of turbulent boundary layers when subjected to strong streamwise favourable pressure gradients. Taylor's 'frozen turbulence' hypothesis is experimentally shown to be valid for flows in the present study even though large streamwise accelerations are involved, the flow being even reverse transitional in some cases. Possible conditions, which are required to be satisfied for the safe use of Taylor's hypothesis in pressure-gradient-driven flows, are also outlined. Measured convection velocities are found to be fairly close to the local mean velocities (typically 90% or more) suggesting that the structure gets convected downstream almost along with the mean flow.
Resumo:
We discuss the assembly of a three-dimensional molecular crystal in terms of short-range supramolecular synthons that spontaneously organize themselves according to Aufbau principles into long-range geometries characteristic of the molecules themselves. For this purpose we have examined the systematic changes in the known crystal structures of a family of fluorobenzenes, C6H6-nFn, where 0 <= n <= 6. Crystal assembly is initiated by forming long-range synthon Aufbau modules (LSAM) that carry the imprint of the synthons. For example, when 1 <= n <= 5 the short-range synthons use H center dot center dot center dot F interactions to form the LSAMs. In the n = 0 and n = 6 compounds, the synthons are H center dot center dot center dot C and F center dot center dot center dot C interactions, respectively. The LSAMs are usually one-dimensional. In this study we show that these 1D LSAMs assemble into 2D quasi-hexagonal close-packed layers. The 3D crystal structure is obtained from the various kinds of close-packing known for these 2D layers. The final stages of this 1D -> 2D -> 3D assembly seem to be more influenced by the packing of LSAMs than by any other factor. In these final stages, there may not be so much influence exerted by the stronger short-range synthons. We discuss the evolution of these fluorobenzene crystal structures in terms of putative LSAMs and the purely geometric relationships between the n and (6 - n) compounds that can thus be expected. Such particle-hole pairs show structural similarities. Our discussion is quantified by the interpretation of intermolecular distances in terms of atomic sizes and with qualitative predictions of magnetic model systems.
Resumo:
We discuss the assembly of a three-dimensional molecular crystal in terms of short-range supramolecular synthons that spontaneously organize themselves according to Aufbau principles into long-range geometries characteristic of the molecules themselves. For this purpose we have examined the systematic changes in the known crystal structures of a family of fluorobenzenes, C6H6-nFn, where 0 <= n <= 6. Crystal assembly is initiated by forming long-range synthon Aufbau modules (LSAM) that carry the imprint of the synthons. For example, when 1 <= n <= 5 the short-range synthons use H center dot center dot center dot F interactions to form the LSAMs. In the n = 0 and n = 6 compounds, the synthons are H center dot center dot center dot C and F center dot center dot center dot C interactions, respectively. The LSAMs are usually one-dimensional. In this study we show that these 1D LSAMs assemble into 2D quasi-hexagonal close-packed layers. The 3D crystal structure is obtained from the various kinds of close-packing known for these 2D layers. The final stages of this 1D -> 2D -> 3D assembly seem to be more influenced by the packing of LSAMs than by any other factor. In these final stages, there may not be so much influence exerted by the stronger short-range synthons. We discuss the evolution of these fluorobenzene crystal structures in terms of putative LSAMs and the purely geometric relationships between the n and (6 - n) compounds that can thus be expected. Such particle-hole pairs show structural similarities. Our discussion is quantified by the interpretation of intermolecular distances in terms of atomic sizes and with qualitative predictions of magnetic model systems.
Resumo:
A two-stage pulse tube cryocooler (PTC) which produces a no-load temperature of similar to 2.5 K in its second stage at an operating frequency of 1.6 Hz has been designed and fabricated. The second stage of the system provides a refrigeration power of similar to 250 mW at 5.0 K. The system uses stainless steel meshes (mesh size 200) along with lead (Pb) granules and combinations of Pb, Er3Ni, and HoCu2 as the first and second stage regenerator materials, respectively. Experimental studies have been carried out on different pulse tube configurations by varying the dimensions of the pulse tubes and regenerators to arrive at the best one, which leads to the lowest no-load second stage cold head temperature. Using this configuration, detailed experimental studies have been conducted by varying the volume percentage ratios of the second stage regenerator materials such as HoCu2, Er3Ni, and Pb (with an average grain size of similar to 250 mu m). This article presents the results of our experimental studies on cryocoolers with the regenerator material arranged in layered structures. Comparative studies have also been presented for specific cases where the regenerator materials are arranged as a homogeneous mixture in the second stage. The experimental results clearly indicate that the design of PTCs should use only layered structures of regenerator materials and not homogenous mixtures.
Resumo:
The first step in the molybdenum cofactor (Moco) biosynthesis pathway involves the conversion of guanosine triphosphate (GTP) to precursor Z by two proteins (MoaA and MoaC). MoaA belongs to the S-adenosylmethioninedependent radical enzyme superfamily and is believed to generate protein and/or substrate radicals by reductive cleavage of S-adenosylmethionine using an Fe-S cluster. MoaC has been suggested to catalyze the release of pyrophosphate and the formation of the cyclic phosphate of precursor Z. However, structural evidence showing the binding of a substrate-like molecule to MoaC is not available. Here, apo and GTP-bound crystal structures of MoaC from Thermus thermophilus HB8 are reported. Furthermore, isothermal titration calorimetry experiments have been carried out in order to obtain thermodynamic parameters for the protein-ligand interactions. In addition, molecular-dynamics (MD) simulations have been carried out on the protein-ligand complex of known structure and on models of relevant complexes for which X-ray structures are not available. The biophysical, structural and MD results reveal the residues that are involved in substrate binding and help in speculating upon a possible mechanism.
Resumo:
This paper summarizes literature explaining workplace bullying and focuses on organisational antecedents of bullying. In order to better understand the logic behind bullying, a model discussing different types of explanations is put forward. Thus, explanations for and factors associated with bullying are classified into three groups, i.e. enabling structures or necessary antecedents (e.g. perceived power imbalances, low perceived costs, and dissatisfaction and frustration), motivating structures or incentives (e.g. internal competition, reward systems, and expected benefits), and precipitating processes or triggering circumstances (e.g. downsizing and restructuring, organisational changes, changes in the composition of the workgroup). The paper concludes that bullying is often an interaction between structures and processes from all three groupings.
Resumo:
In this work, a method is proposed for rolling contact fatigue crack propagation analysis using contact and fracture theories in conjunction with fatigue laws. The proposed method is used in the fatigue analysis of rocker and roller–rocker bearings of a railway open web girder bridge which is instrumented with strain gages. Using a contact algorithm based on the minimum energy principle for bodies in rolling contact with dry friction, the normal and tangential pressure distribution are computed. It is seen that the most critical location of a crack in bearings is at a point very close to the contact region, as expected.
Resumo:
In this work, a method is proposed for rolling contact fatigue crack propagation analysis using contact and fracture theories in conjunction with fatigue laws. The proposed method is used in the fatigue analysis of rocker and roller-rocker bearings of a railway open web girder bridge which is instrumented with strain gages. Using a contact algorithm based on the minimum energy principle for bodies in rolling contact with dry friction, the normal and tangential pressure distribution are computed. It is seen that the most critical location of a crack in bearings is at a point very close to the contact region, as expected. (C) 2010 Elsevier Ltd. All rights reserved.