957 resultados para Statistical approach
Resumo:
There are complex and diverse methodological problems involved in the clinical and epidemiological study of respiratory diseases and their etiological factors. The association of urban growth, industrialization and environmental deterioration with respiratory diseases makes it necessary to pay more attention to this research area with a multidisciplinary approach. Appropriate study designs and statistical techniques to analyze and improve our understanding of the pathological events and their causes must be implemented to reduce the growing morbidity and mortality through better preventive actions and health programs. The objective of the article is to review the most common methodological problems in this research area and to present the most available statistical tools used.
Resumo:
In this paper, a novel hybrid approach is proposed for electricity prices forecasting in a competitive market, considering a time horizon of 1 week. The proposed approach is based on the combination of particle swarm optimization and adaptive-network based fuzzy inference system. Results from a case study based on the electricity market of mainland Spain are presented. A thorough comparison is carried out, taking into account the results of previous publications, to demonstrate its effectiveness regarding forecasting accuracy and computation time. Finally, conclusions are duly drawn. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
As sequelas fisiopatológicas do stress oxidativo são difíceis de quantificar. Apesar dos obstáculos, a relevância médica do stress oxidativo tem vindo a ser cada vez mais reconhecida, sendo hoje em dia encarado como um componente chave de virtualmente todas as doenças. A disfunção erétil (DE) surge neste contexto como uma espécie de barómetro da função endotelial e do dano oxidativo. A quantificação de biomarcadores de stress oxidativo poderá apresentar um enorme impacto na avaliação de pacientes com DE. O rácio glutationa reduzida/oxidada (GSH/GSSG) e a nitrotirosina (3-NT) têm vindo a demonstrar relevância clínica. A consideração de polimorfismos genéticos constitui ainda uma abordagem promissora na avaliação destas relações no futuro. Um método altamente sensível de cromatografia líquida de alta performance (HPLC) foi desenvolvido para a determinação de 3-NT em plasma humano. As concentrações de 3-NT medidos em indivíduos com DE foram 6,6±2,1μM (média±S.D., n = 46). A medição da concentração plasmática de 3-NT poderá revelar-se útil como marcador de dano oxidativo dependente do óxido nítrico (NO). O nível de stress oxidativo pode também ser quantificado através da medição do decréscimo do rácio GSH/GSSG, que tem mostrado alterações numa miríade de patologias, como a DE e a diabetes mellitus. O método proposto para a quantificação do rácio GSH/GSSG em HPLC apresenta a vantagem de avaliação concomitante dos dois parâmetros em apenas uma corrida. O valor do rácio GSH/GSSG obtido a partir de sangue de indivíduos com DE foi 11,9±9,8 (média±S.D., n = 49). Os resultados estatísticos revelaram diferenças significativas (p<0,001) entre ambos a concentração plasmática de 3-NT e o rácio GSH/GSSG de sangue de indivíduos com DE e as respetivas medições em indivíduos saudáveis. Observaram-se ainda diferenças estatisticamente significativas (p≈0,027) entre o rácio GSH/GSSG do sangue de pacientes apenas com diagnóstico de DE e a medição respetiva em indivíduos com DE e comorbilidades cardiovasculares. Estes resultados enfatizam o papel do dano oxidativo na biopatologia da DE, elucidado com o auxílio destas duas metodologias, que poderão ter um amplo campo de aplicação no futuro, dado que se mostraram simples, não dispendiosas e rápidas, podendo eventualmente adequar-se a estudos de rastreio em larga escala.
Resumo:
The best places to locate the Gas Supply Units (GSUs) on a natural gas systems and their optimal allocation to loads are the key factors to organize an efficient upstream gas infrastructure. The number of GSUs and their optimal location in a gas network is a decision problem that can be formulated as a linear programming problem. Our emphasis is on the formulation and use of a suitable location model, reflecting real-world operations and constraints of a natural gas system. This paper presents a heuristic model, based on lagrangean approach, developed for finding the optimal GSUs location on a natural gas network, minimizing expenses and maximizing throughput and security of supply.The location model is applied to the Iberian high pressure natural gas network, a system modelised with 65 demand nodes. These nodes are linked by physical and virtual pipelines – road trucks with gas in liquefied form. The location model result shows the best places to locate, with the optimal demand allocation and the most economical gas transport mode: by pipeline or by road truck.
Resumo:
The introduction of wind power generation in several countries around the world, including in European countries, where energy policy directives have encouraged the use of renewables, led to several changes in market and power systems operation. The intensive integration of these sources has led to situations in which the demand is lower than the available renewable resources. In these situations a part of the available generation is wasted if not used for storage or to supply additional demand. This paper proposes a real time demand response methodology based on changing the electricity price for the consumers expecting an increase in the demand in the periods in which that demand is lower than the available renewable generation. The consumers response to the changes in electricity price is characterized by their price elasticity of demand considered distinct for each consumer type. The proposed methodology is applied to the Portuguese power system, in the context of the Iberian electricity market (MIBEL). The renewable-based producers are considered as special producers, with special tariffs, and so it is important to use the energy available as it will be paid anyway. In this context, consumers are entities actively participating in the operation of the market.
Resumo:
A novel hybrid approach, combining wavelet transform, particle swarm optimization, and adaptive-network-based fuzzy inference system, is proposed in this paper for short-term electricity prices forecasting in a competitive market. Results from a case study based on the electricity market of mainland Spain are presented. A thorough comparison is carried out, taking into account the results of previous publications. Finally, conclusions are duly drawn.
Resumo:
In this paper, a novel mixed-integer nonlinear approach is proposed to solve the short-term hydro scheduling problem in the day-ahead electricity market, considering not only head-dependency, but also start/stop of units, discontinuous operating regions and discharge ramping constraints. Results from a case study based on one of the main Portuguese cascaded hydro energy systems are presented, showing that the proposedmixed-integer nonlinear approach is proficient. Conclusions are duly drawn. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Storm- and tsunami-deposits are generated by similar depositional mechanisms making their discrimination hard to establish using classic sedimentologic methods. Here we propose an original approach to identify tsunami-induced deposits by combining numerical simulation and rock magnetism. To test our method, we investigate the tsunami deposit of the Boca do Rio estuary generated by the 1755 earthquake in Lisbon which is well described in the literature. We first test the 1755 tsunami scenario using a numerical inundation model to provide physical parameters for the tsunami wave. Then we use concentration (MS. SIRM) and grain size (chi(ARM), ARM, B1/2, ARM/SIRM) sensitive magnetic proxies coupled with SEM microscopy to unravel the magnetic mineralogy of the tsunami-induced deposit and its associated depositional mechanisms. In order to study the connection between the tsunami deposit and the different sedimentologic units present in the estuary, magnetic data were processed by multivariate statistical analyses. Our numerical simulation show a large inundation of the estuary with flow depths varying from 0.5 to 6 m and run up of similar to 7 m. Magnetic data show a dominance of paramagnetic minerals (quartz) mixed with lesser amount of ferromagnetic minerals, namely titanomagnetite and titanohematite both of a detrital origin and reworked from the underlying units. Multivariate statistical analyses indicate a better connection between the tsunami-induced deposit and a mixture of Units C and D. All these results point to a scenario where the energy released by the tsunami wave was strong enough to overtop and erode important amount of sand from the littoral dune and mixed it with reworked materials from underlying layers at least 1 m in depth. The method tested here represents an original and promising tool to identify tsunami-induced deposits in similar embayed beach environments.
Resumo:
This study explores a large set of OC and EC measurements in PM(10) and PM(2.5) aerosol samples, undertaken with a long term constant analytical methodology, to evaluate the capability of the OC/EC minimum ratio to represent the ratio between the OC and EC aerosol components resulting from fossil fuel combustion (OC(ff)/EC(ff)). The data set covers a wide geographical area in Europe, but with a particular focus upon Portugal, Spain and the United Kingdom, and includes a great variety of sites: urban (background, kerbside and tunnel), industrial, rural and remote. The highest minimum ratios were found in samples from remote and rural sites. Urban background sites have shown spatially and temporally consistent minimum ratios, of around 1.0 for PM(10) and 0.7 for PM(2.5).The consistency of results has suggested that the method could be used as a tool to derive the ratio between OC and EC from fossil fuel combustion and consequently to differentiate OC from primary and secondary sources. To explore this capability, OC and EC measurements were performed in a busy roadway tunnel in central Lisbon. The OC/EC ratio, which reflected the composition of vehicle combustion emissions, was in the range of 03-0.4. Ratios of OC/EC in roadside increment air (roadside minus urban background) in Birmingham, UK also lie within the range 03-0.4. Additional measurements were performed under heavy traffic conditions at two double kerbside sites located in the centre of Lisbon and Madrid. The OC/EC minimum ratios observed at both sites were found to be between those of the tunnel and those of urban background air, suggesting that minimum values commonly obtained for this parameter in open urban atmospheres over-predict the direct emissions of OC(ff) from road transport. Possible reasons for this discrepancy are explored. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
In this paper, a hybrid intelligent approach is proposed for short-term electricity prices forecasting in a competitive market. The proposed approach is based on the wavelet transform and a hybrid of neural networks and fuzzy logic. Results from a case study based on the electricity market of mainland Spain are presented. A thorough comparison is carried out, taking into account the results of previous publications. Conclusions are duly drawn. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
The spread and globalization of distributed generation (DG) in recent years has should highly influence the changes that occur in Electricity Markets (EMs). DG has brought a large number of new players to take action in the EMs, therefore increasing the complexity of these markets. Simulation based on multi-agent systems appears as a good way of analyzing players’ behavior and interactions, especially in a coalition perspective, and the effects these players have on the markets. MASCEM – Multi-Agent System for Competitive Electricity Markets was created to permit the study of the market operation with several different players and market mechanisms. MASGriP – Multi-Agent Smart Grid Platform is being developed to facilitate the simulation of micro grid (MG) and smart grid (SG) concepts with multiple different scenarios. This paper presents an intelligent management method for MG and SG. The simulation of different methods of control provides an advantage in comparing different possible approaches to respond to market events. Players utilize electric vehicles’ batteries and participate in Demand Response (DR) contracts, taking advantage on the best opportunities brought by the use of all resources, to improve their actions in response to MG and/or SG requests.
Resumo:
Although we have many electric devices at home, there are just few systems to evaluate, monitor and control them. Sometimes users go out and leave their electric devices turned on what can cause energy wasting and dangerous situations. Therefore most of the users may want to know the using states of their electrical appliances through their mobile devices in a pervasive way. In this paper, we propose an Intelligent Supervisory Control System to evaluate, monitor and control the use of electric devices in home, from outside. Because of the transferring data to evaluate, monitor and control user's location and state of home (ex. nobody at home) may be opened to attacks leading to dangerous situations. In our model we include a location privacy module and encryption module to provide security to user location and data. Intelligent Supervising Control System gives to the user the ability to manage electricity loads by means of a multi-agent system involving evaluation, monitoring, control and energy resource agents.
Resumo:
This paper proposes a simulated annealing (SA) approach to address energy resources management from the point of view of a virtual power player (VPP) operating in a smart grid. Distributed generation, demand response, and gridable vehicles are intelligently managed on a multiperiod basis according to V2G user´s profiles and requirements. Apart from using the aggregated resources, the VPP can also purchase additional energy from a set of external suppliers. The paper includes a case study for a 33 bus distribution network with 66 generators, 32 loads, and 1000 gridable vehicles. The results of the SA approach are compared with a methodology based on mixed-integer nonlinear programming. A variation of this method, using ac load flow, is also used and the results are compared with the SA solution using network simulation. The proposed SA approach proved to be able to obtain good solutions in low execution times, providing VPPs with suitable decision support for the management of a large number of distributed resources.
Resumo:
The large increase of distributed energy resources, including distributed generation, storage systems and demand response, especially in distribution networks, makes the management of the available resources a more complex and crucial process. With wind based generation gaining relevance, in terms of the generation mix, the fact that wind forecasting accuracy rapidly drops with the increase of the forecast anticipation time requires to undertake short-term and very short-term re-scheduling so the final implemented solution enables the lowest possible operation costs. This paper proposes a methodology for energy resource scheduling in smart grids, considering day ahead, hour ahead and five minutes ahead scheduling. The short-term scheduling, undertaken five minutes ahead, takes advantage of the high accuracy of the very-short term wind forecasting providing the user with more efficient scheduling solutions. The proposed method uses a Genetic Algorithm based approach for optimization that is able to cope with the hard execution time constraint of short-term scheduling. Realistic power system simulation, based on PSCAD , is used to validate the obtained solutions. The paper includes a case study with a 33 bus distribution network with high penetration of distributed energy resources implemented in PSCAD .
Resumo:
Designing electric installation projects, demands not only academic knowledge, but also other types of knowledge not easily acquired through traditional instructional methodologies. A lot of additional empirical knowledge is missing and so the academic instruction must be completed with different kinds of knowledge, such as real-life practical examples and simulations. On the other hand, the practical knowledge detained by the most experienced designers is not formalized in such a way that is easily transmitted. In order to overcome these difficulties present in the engineers formation, we are developing an Intelligent Tutoring System (ITS), for training and support concerning the development of electrical installation projects to be used by electrical engineers, technicians and students.