992 resultados para Statistical Computation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Local computation in join trees or acyclic hypertrees has been shown to be linked to a particular algebraic structure, called valuation algebra.There are many models of this algebraic structure ranging from probability theory to numerical analysis, relational databases and various classical and non-classical logics. It turns out that many interesting models of valuation algebras may be derived from semiring valued mappings. In this paper we study how valuation algebras are induced by semirings and how the structure of the valuation algebra is related to the algebraic structure of the semiring. In particular, c-semirings with idempotent multiplication induce idempotent valuation algebras and therefore permit particularly efficient architectures for local computation. Also important are semirings whose multiplicative semigroup is embedded in a union of groups. They induce valuation algebras with a partially defined division. For these valuation algebras, the well-known architectures for Bayesian networks apply. We also extend the general computational framework to allow derivation of bounds and approximations, for when exact computation is not feasible.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We describe recent progress of an ongoing research programme aimed at producing computational science software that can exploit high performance architectures in the atomic physics application domain. We examine the computational bottleneck of matrix construction in a suite of two-dimensional R-matrix propagation programs, 2DRMP, that are aimed at creating virtual electron collision experiments on HPC architectures. We build on Ixaru's extended frequency dependent quadrature rules (EFDQR) for Slater integrals and examine the challenge of constructing Hamiltonian matrices in parallel across an m-processor compute node in a block cyclic distribution for subsequent diagonalization by ScaLAPACK.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper describes the computation of stress intensity factors (SIFs) for cracks in functionally graded materials (FGMs) using an extended element-free Galerkin (XEFG) method. The SIFs are extracted through the crack closure integral (CCI) with a local smoothing technique, non-equilibrium and incompatibility formulations of the interaction integral and the displacement method. The results for mode I and mixed mode case studies are presented and compared with those available in the literature. They are found to be in good agreement where the average absolute error for the CCI with local smoothing, despite its simplicity, yielded a high level of accuracy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this article, we focus on the analysis of competitive gene set methods for detecting the statistical significance of pathways from gene expression data. Our main result is to demonstrate that some of the most frequently used gene set methods, GSEA, GSEArot and GAGE, are severely influenced by the filtering of the data in a way that such an analysis is no longer reconcilable with the principles of statistical inference, rendering the obtained results in the worst case inexpressive. A possible consequence of this is that these methods can increase their power by the addition of unrelated data and noise. Our results are obtained within a bootstrapping framework that allows a rigorous assessment of the robustness of results and enables power estimates. Our results indicate that when using competitive gene set methods, it is imperative to apply a stringent gene filtering criterion. However, even when genes are filtered appropriately, for gene expression data from chips that do not provide a genome-scale coverage of the expression values of all mRNAs, this is not enough for GSEA, GSEArot and GAGE to ensure the statistical soundness of the applied procedure. For this reason, for biomedical and clinical studies, we strongly advice not to use GSEA, GSEArot and GAGE for such data sets.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We introduce a family of Hamiltonian systems for measurement-based quantum computation with continuous variables. The Hamiltonians (i) are quadratic, and therefore two body, (ii) are of short range, (iii) are frustration-free, and (iv) possess a constant energy gap proportional to the squared inverse of the squeezing. Their ground states are the celebrated Gaussian graph states, which are universal resources for quantum computation in the limit of infinite squeezing. These Hamiltonians constitute the basic ingredient for the adiabatic preparation of graph states and thus open new venues for the physical realization of continuous-variable quantum computing beyond the standard optical approaches. We characterize the correlations in these systems at thermal equilibrium. In particular, we prove that the correlations across any multipartition are contained exactly in its boundary, automatically yielding a correlation area law. © 2011 American Physical Society.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Particle-in-cell (PIC) simulations of relativistic shocks are in principle capable of predicting the spectra of photons that are radiated incoherently by the accelerated particles. The most direct method evaluates the spectrum using the fields given by the Lienard-Wiechart potentials. However, for relativistic particles this procedure is computationally expensive. Here we present an alternative method that uses the concept of the photon formation length. The algorithm is suitable for evaluating spectra both from particles moving in a specific realization of a turbulent electromagnetic field or from trajectories given as a finite, discrete time series by a PIC simulation. The main advantage of the method is that it identifies the intrinsic spectral features and filters out those that are artifacts of the limited time resolution and finite duration of input trajectories.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper investigates the distribution of the condition number of complex Wishart matrices. Two closely related measures are considered: the standard condition number (SCN) and the Demmel condition number (DCN), both of which have important applications in the context of multiple-input multipleoutput (MIMO) communication systems, as well as in various branches of mathematics. We first present a novel generic framework for the SCN distribution which accounts for both central and non-central Wishart matrices of arbitrary dimension. This result is a simple unified expression which involves only a single scalar integral, and therefore allows for fast and efficient computation. For the case of dual Wishart matrices, we derive new exact polynomial expressions for both the SCN and DCN distributions. We also formulate a new closed-form expression for the tail SCN distribution which applies for correlated central Wishart matrices of arbitrary dimension and demonstrates an interesting connection to the maximum eigenvalue moments of Wishart matrices of smaller dimension. Based on our analytical results, we gain valuable insights into the statistical behavior of the channel conditioning for various MIMO fading scenarios, such as uncorrelated/semi-correlated Rayleigh fading and Ricean fading. © 2010 IEEE.