958 resultados para Stationary bandit
Resumo:
We present a comprehensive study of the observational dependence of the mass-loss rate in stationary stellar winds of hot massive stars on the metal content of their atmospheres. The metal content of stars in the Magellanic Clouds is discussed, and a critical assessment is given of state-of-the-art mass-loss determinations of OB stars in these two satellite systems and the Milky-Way. Assuming a power-law dependence of mass loss on metal content,. M. Z(m), and adopting a theoretical relation between the terminal flow velocity and metal content, v(infinity). Z(0.13) (Leitherer et al. 1992, ApJ, 401, 596), we find m = 0.83 +/- 0.16 for non-clumped outflows from an analysis of the wind momentum luminosity relation (WLR) for stars more luminous than 105.2 L circle dot. Within the errors, this result is in agreement with the prediction m = 0.69 +/- 0.10 by Vink et al. (2001, A& A, 369, 574). Absolute empirical values for the mass loss, based on Ha and ultraviolet (UV) wind lines, are found to be a factor of two higher than predictions in this high luminosity regime. If this difference is attributed to inhomogeneities in the wind, and this clumping does not impact the predictions, this would imply that luminous O and early-B stars have clumping factors in their Ha and UV line forming regions of about a factor of four. For lower luminosity stars, the winds are so weak that their strengths can generally no longer be derived from optical spectral lines (essentially Ha) and one must currently rely on the analysis of UV lines. We confirm that in this low-luminosity domain the observed Galactic WLR is found to be much steeper than expected from theory (although the specific sample is rather small), leading to a discrepancy between UV mass-loss rates and the predictions by a factor 100 at luminosities of L similar to 10(4.75) L circle dot, the origin of which is unknown. We emphasize that even if the current mass-loss rates of hot luminous stars would turn out to be overestimated as a result of wind clumping, but the degree of clumping would be rather independent of metallicity, the scalings derived in this study are expected to remain correct.
Resumo:
We reported previously that a Salmonella enterica serovar Enteritidis dam mutant expressing a truncated Dam protein does not agglutinate in the presence of specific antibodies against O9 polysaccharide. Here we investigate the participation of Dam in lipopolysaccharide (LPS) synthesis in Salmonella. The LPS O-antigen profiles of a dam null mutant (SEDeltadam) and the Salmonella serovar Enteritidis parental strain were examined by using electrophoresis and silver staining. Compared to the parental strain, SEDeltadam produced LPS with shorter O-antigen polysaccharide chains. Since Wzz is responsible for the chain length distribution of the O antigen, we investigated whether Dam methylation is involved in regulating wzz expression. Densitometry analysis showed that the amount of Wzz produced by SEDeltadam is threefold lower than the amount of Wzz produced by the parental strain. Concomitantly, the activity of the wzz promoter in SEDeltadam was reduced nearly 50% in logarithmic phase and 25% in stationary phase. These results were further confirmed by reverse transcription-PCR showing that wzz gene expression was threefold lower in the dam mutant than in the parental strain. Our results demonstrate that wzz gene expression is downregulated in a dam mutant, indicating that Dam methylation activates expression of this gene. This work indicates that wzz is a new target regulated by Dam methylation and demonstrates that DNA methylation not only affects the production of bacterial surface proteins but also the production of surface polysaccharides.
Resumo:
The amount of lipopolysaccharide (LPS) O antigen (OAg) and its chain length distribution are important factors that protect bacteria from serum complement. Salmonella enterica serovar Typhi produces LPS with long chain length distribution (L-OAg) controlled by the wzz gene, whereas serovar Typhimurium produces LPS with two OAg chain lengths: an L-OAg controlled by Wzz(ST) and a very long (VL) OAg determined by Wzz(fepE). This study shows that serovar Enteritidis also has a bimodal OAg distribution with two preferred OAg chain lengths similar to serovar Typhimurium. It was reported previously that OAg production by S. Typhi increases at the late exponential and stationary phases of growth. The results of this study demonstrate that increased amounts of L-OAg produced by S. Typhi grown to stationary phase confer higher levels of bacterial resistance to human serum. Production of OAg by serovars Typhimurium and Enteritidis was also under growth-phase-dependent regulation; however, while the total amount of OAg increased during growth, the VL-OAg distribution remained constant. The VL-OAg distribution was primarily responsible for complement resistance, protecting the non-typhoidal serovars from the lytic action of serum irrespective of the growth phase. As a result, the non-typhoidal species were significantly more resistant than S. Typhi to human serum. When S. Typhi was transformed with a multicopy plasmid containing the S. Typhimurium wzz(fepE) gene, resistance to serum increased to levels comparable to the non-typhoidal serovars. In contrast to the relevant role for high-molecular-mass OAg molecules, the presence of Vi antigen did not contribute to serum resistance of clinical isolates of serovar Typhi.
Resumo:
We reported earlier that the production of O antigen lipopolysaccharide (LPS) by Salmonella enterica serovar Typhi (Salmonella typhi) increases at the onset of stationary phase and correlates with a growth-regulated expression of the rfaH gene under the control of the alternative sigma factor RpoN (Microbiology 148 (2002) 3789). In this study, we demonstrate that RpoS also modulates rfaH promoter activity as revealed by the absence of growth-dependent regulation of an rfaH-lacZ transcriptional fusion and O antigen production in a S. typhi rpoS mutant. Introduction of a constitutively expressed rpoN gene into the rpoS mutant restored increased production of O antigen during stationary phase, suggesting that constitutive production of RpoN could overcome the RpoS defect. Similar results were observed when an rpoS rpoN double mutant was transformed with the intact rpoN gene. Thus, we conclude that both RpoS and RpoN control the rfaH promoter activity and concomitantly, the production of O-specific LPS in S. typhi.
Resumo:
The authors previously reported increased expression of the Salmonella enterica serovar Typhi (S. typhi) rfaH gene when the bacterial cells reach stationary phase. In this study, using a lacZ fusion to the rfaH promoter region, they demonstrate that growth-dependent regulation of rfaH expression occurs at the level of transcription initiation. It was also observed that production of the lipopolysaccharide (LPS) O-antigen by S. typhi Ty2 correlated with the differential expression of rfaH during bacterial growth. This was probably due to the increased cellular levels of RfaH, since expression of the distal gene in the O-antigen gene cluster of S. typhi Ty2, wbaP, was also increased during stationary growth, as demonstrated by RT-PCR analysis. Examination of the sequences upstream of the rfaH coding region revealed homologies to potential binding sites for the RcsB/RcsA dimer of the RcsC/YopJ/RcsB phosphorelay regulatory system and for the RpoN alternative sigma factor. The expression of the rfaH gene in rpoN and rcsB mutants of S. typhi Ty2 was measured. The results indicate that inactivation of rpoN, but not of rcsB, suppresses the growth-phase-dependent induction of rfaH expression. Furthermore, production of beta-galactosidase mediated by the rfaH-lacZ fusion increased approximately fourfold when bacteria were grown in a nitrogen-limited medium. Nitrogen limitation was also shown to increase the expression of the O-antigen by the wild-type S. typhi Ty2, as demonstrated by a similar electrophoretic profile to that observed during the stationary phase of growth in rich media. It is therefore concluded that the relationship between LPS production and nitrogen limitation parallels the pattern of rfaH regulation under the control of RpoN and is consistent with the idea that RpoN modulates LPS formation via its effect on rfaH gene expression during bacterial growth.
Resumo:
The Burkholderia cepacia complex comprises groups of genomovars (genotypically distinct strains with very similar phenotypes) that have emerged as important opportunistic pathogens in cystic fibrosis (CF) patients. The inflammatory response against bacteria in the airways of CF individuals is dominated by polymorphonuclear cells and involves the generation of oxidative stress, which leads to further inflammation and tissue damage. Bacterial catalase, catalase-peroxidase and superoxide dismutase activities may contribute to the survival of B. cepacia following exposure to reactive oxygen metabolites generated by host cells in response to infection. In the present study the authors investigated the production of catalase, peroxidase and SOD by isolates belonging to various genomovars of the B. cepacia complex. Production of both catalase and SOD was maximal during late stationary phase in almost all isolates examined. Native PAGE identified 13 catalase electrophoretotypes and two SOD electrophoretotypes (corresponding to an Fe-SOD class) in strains belonging to the six genomovars of the B. cepacia complex. Seven out of 11 strains displaying high-level survival after H(2)O(2) treatment in vitro had a bifunctional catalase/peroxidase, and included all the genomovar III strains examined. These isolates represent most of the epidemic isolates that are often associated with the cepacia syndrome. The majority of the isolates from all the genomovars were resistant to extracellular O(-)(2), while resistance to intracellularly generated O(-)(2)was highly variable and could not be correlated with the detected levels of SOD activity. Altogether the results suggest that resistance to toxic oxygen metabolites from extracellular sources may be a factor involved in the persistence of B. cepacia in the airways of CF individuals.
Resumo:
Turbocompounding is the process of recovering a proportion of an engine’s fuel energy that would otherwise be lost in the exhaust process and adding it to the output power. This was first seen in the 1930s and is carried out by coupling an exhaust gas turbine to the crankshaft of a reciprocating engine. It has since been recognised that coupling the power turbine to an electrical generator instead of the crankshaft has the potential to reduce the fuel consumption further with the added flexibility of being able to decide how this recovered energy is used. The electricity generated can be used in automotive applications to assist the crankshaft using a flywheel motor generator or to power ancillaries that would otherwise have run off the crankshaft. In the case of stationary power plants, it can assist the electrical power output. Decoupling the power turbine from the crankshaft and coupling it to a generator allows the power electronics to control the turbine speed independently in order to optimise the specific fuel consumption for different engine operating conditions. This method of energy recapture is termed ‘turbogenerating’.
This paper gives a brief history of turbocompounding and its thermodynamic merits. It then moves on to give an account of the validation of a turbogenerated engine model. The model is then used to investigate what needs to be done to an engine when a turbogenerator is installed. The engine being modelled is used for stationary power generation and is fuelled by an induced biogas with a small portion of palm oil being injected into the cylinder to initiate combustion by compression ignition. From these investigations, optimum settings were found that result in a 10.90% improvement in overall efficiency. These savings relate to the same engine without a turbogenerator installed operating with fixed fuelling.
Resumo:
The propagation of electron-acoustic solitary waves and shock structures is investigated in a plasma characterized by a superthermal electron population. A three-component plasma model configuration is employed, consisting of inertial (“cold”) electrons, inertialess ? (kappa) distributed superthermal (“hot”) electrons and stationary ions. A multiscale method is employed, leading to a Korteweg-de Vries (KdV) equation for the electrostatic potential (in the absence of dissipation). Taking into account dissipation, a hybrid Korteweg-de Vries-Burgers (KdVB) equation is derived. Exact negative-potential pulse- and kink-shaped solutions (shocks) are obtained. The relative strength among dispersion, nonlinearity and damping coefficients is discussed. Excitations formed in superthermal plasma (finite ?) are narrower and steeper, compared to the Maxwellian case (infinite ?). A series of numerical simulations confirms that energy initially stored in a solitary pulse which propagates in a stable manner for large ? (Maxwellian plasma) may break down to smaller structures or/and to random oscillations, when it encounters a small-? (nonthermal) region. On the other hand, shock structures used as initial conditions for numerical simulations were shown to be robust, essentially responding to changed in the environment by a simple profile change (in width).
Resumo:
The linear and nonlinear properties of low-frequency electrostatic excitations of charged dust particles (or defects) in a dense collisionless, unmagnetized Thomas-Fermi plasma are investigated. A fully ionized three-component model plasma consisting of electrons, ions, and negatively charged massive dust grains is considered. Electrons and ions are assumed to be in a degenerate quantum state, obeying the Thomas-Fermi density distribution, whereas the inertial dust component is described by a set of classical fluid equations. Considering large-amplitude stationary profile travelling-waves in a moving reference frame, the fluid evolution equations are reduced to a pseudo-energy-balance equation, involving a Sagdeev-type potential function. The analysis describes the dynamics of supersonic dust-acoustic solitary waves in Thomas-Fermi plasmas, and provides exact predictions for their dynamical characteristics, whose dependence on relevant parameters (namely, the ion-to-electron Fermi temperature ratio, and the dust concentration) is investigated. An alternative route is also adopted, by assuming weakly varying small-amplitude disturbances off equilibrium, and then adopting a multiscale perturbation technique to derive a Korteweg–de Vries equation for the electrostatic potential, and finally solving in terms for electric potential pulses (electrostatic solitons). A critical comparison between the two methods reveals that they agree exactly in the small-amplitude, weakly superacoustic limit. The dust concentration (Havnes) parameter h = Zd0nd0/ne0 affects the propagation characteristics by modifying the phase speed, as well as the electron/ion Fermi temperatures. Our results aim at elucidating the characteristics of electrostatic excitations in dust-contaminated dense plasmas, e.g., in metallic electronic devices, and also arguably in supernova environments, where charged dust defects may occur in the quantum plasma regime.
Resumo:
The nonlinear dynamics of electron-acoustic localized structures in a collisionless and unmagnetized plasma consisting of “cool” inertial electrons, “hot” electrons having a kappa distribution, and stationary ions is studied. The inertialess hot electron distribution thus has a long-tailed suprathermal (non-Maxwellian) form. A dispersion relation is derived for linear electron-acoustic waves. They show a strong dependence of the charge screening mechanism on excess suprathermality (through ?). A nonlinear pseudopotential technique is employed to investigate the occurrence of stationary-profile solitary waves, focusing on how their characteristics depend on the spectral index ?, and the hot-to-cool electron temperature and density ratios. Only negative polarity solitary waves are found to exist, in a parameter region which becomes narrower as deviation from the Maxwellian (suprathermality) increases, while the soliton amplitude at fixed soliton speed increases. However, for a constant value of the true Mach number, the amplitude decreases for decreasing ?.
Resumo:
Respiratory motion introduces complex spatio-temporal variations in the dosimetry of radiotherapy. There is a paucity of literature investigating the radiobiological consequences of intrafraction motion and concerns regarding the impact of movement when applied to cancer cell lines in vitro exist. We have addressed this by developing a novel model which accurately replicates respiratory motion under experimental conditions to allow clinically relevant irradiation of cell lines. A bespoke phantom and motor driven moving platform was adapted to accommodate flasks containing medium and cells in order to replicate respiratory motion using varying frequencies and amplitude settings. To study this effect on cell survival in vitro, dose response curves were determined for human lung cancer cell lines H1299 and H460 exposed to a uniform 6 MV radiation field under moving or stationary conditions. Cell survival curves showed no significant difference between irradiation at different dose points for these cell lines in the presence or absence of motion. These data indicate that motion of unshielded cells in vitro does not affect cell survival in the presence of uniform irradiation. This model provides a novel research platform to investigate the radiobiological consequences of respiratory motion in radiotherapy.
Resumo:
We studied the effect of intervening saccades on the manual interception of a moving target. Previous studies suggest that stationary reach goals are coded and updated across saccades in gaze-centered coordinates, but whether this generalizes to interception is unknown. Subjects (n = 9) reached to manually intercept a moving target after it was rendered invisible. Subjects either fixated throughout the trial or made a saccade before reaching (both fixation points were in the range of -10° to 10°). Consistent with previous findings and our control experiment with stationary targets, the interception errors depended on the direction of the remembered moving goal relative to the new eye position, as if the target is coded and updated across the saccade in gaze-centered coordinates. However, our results were also more variable in that the interception errors for more than half of our subjects also depended on the goal direction relative to the initial gaze direction. This suggests that the feedforward transformations for interception differ from those for stationary targets. Our analyses show that the interception errors reflect a combination of biases in the (gaze-centered) representation of target motion and in the transformation of goal information into body-centered coordinates for action.
Resumo:
The cerebral cortex contains circuitry for continuously computing properties of the environment and one's body, as well as relations among those properties. The success of complex perceptuomotor performances requires integrated, simultaneous use of such relational information. Ball catching is a good example as it involves reaching and grasping of visually pursued objects that move relative to the catcher. Although integrated neural control of catching has received sparse attention in the neuroscience literature, behavioral observations have led to the identification of control principles that may be embodied in the involved neural circuits. Here, we report a catching experiment that refines those principles via a novel manipulation. Visual field motion was used to perturb velocity information about balls traveling on various trajectories relative to a seated catcher, with various initial hand positions. The experiment produced evidence for a continuous, prospective catching strategy, in which hand movements are planned based on gaze-centered ball velocity and ball position information. Such a strategy was implemented in a new neural model, which suggests how position, velocity, and temporal information streams combine to shape catching movements. The model accurately reproduces the main and interaction effects found in the behavioral experiment and provides an interpretation of recently observed target motion-related activity in the motor cortex during interceptive reaching by monkeys. It functionally interprets a broad range of neurobiological and behavioral data, and thus contributes to a unified theory of the neural control of reaching to stationary and moving targets.
Resumo:
This paper examines the occurrence and fragility of information cascades in two laboratory experiments. One group of low informed participants sequentially guess which of two states has been randomly chosen. In a matched pairs design, another group of high informed participants make similar guesses after having observed the guesses of the low informed participants. In the second experiment, participants' beliefs about the chosen state are elicited. In equilibrium, low informed players who observe an established pattern of identical guesses herd without regard to their private information whereas high informed players always guess according to their private information. Equilibrium behavior implies that information cascades emerge in the group of low informed participants, the belief based solely on cascade guesses is stationary, and information cascades are systematically broken by high informed participants endowed with private information contradicting the cascade guesses. Experimental results show that the behavior of low informed participants is qualitatively in line with the equilibrium prediction. Information cascades often emerge in our experiments. The tendency of low informed participants to engage in cascade behavior increases with the number of identical guesses. Our main finding is that information cascades are not fragile. The behavior of high informed participants differs markedly from the equilibrium prediction. Only one-third of laboratory cascades are broken by high informed participants endowed with private information contradicting the cascade guesses. The relative frequency of cascade breaks is 15% for the situations where five or more identical guesses are observed. Participants' elicited beliefs are strongly consistent with their own behavior and show that, unlike in equilibrium, the more cascade guesses participants observe the more they believe in the state favored by those guesses.
Resumo:
Competition between microbial species is a product of, yet can lead to a reduction in, the microbial diversity of specific habitats. Microbial habitats can resemble ecological battlefields where microbial cells struggle to dominate and/or annihilate each other and we explore the hypothesis that (like plant weeds) some microbes are genetically hard-wired to behave in a vigorous and ecologically aggressive manner. These 'microbial weeds' are able to dominate the communities that develop in fertile but uncolonized - or at least partially vacant - habitats via traits enabling them to out-grow competitors; robust tolerances to habitat-relevant stress parameters and highly efficient energy-generation systems; avoidance of or resistance to viral infection, predation and grazers; potent antimicrobial systems; and exceptional abilities to sequester and store resources. In addition, those associated with nutritionally complex habitats are extraordinarily versatile in their utilization of diverse substrates. Weed species typically deploy multiple types of antimicrobial including toxins; volatile organic compounds that act as either hydrophobic or highly chaotropic stressors; biosurfactants; organic acids; and moderately chaotropic solutes that are produced in bulk quantities (e.g. acetone, ethanol). Whereas ability to dominate communities is habitat-specific we suggest that some microbial species are archetypal weeds including generalists such as: Pichia anomala, Acinetobacter spp. and Pseudomonas putida; specialists such as Dunaliella salina, Saccharomyces cerevisiae, Lactobacillus spp. and other lactic acid bacteria; freshwater autotrophs Gonyostomum semen and Microcystis aeruginosa; obligate anaerobes such as Clostridium acetobutylicum; facultative pathogens such as Rhodotorula mucilaginosa, Pantoea ananatis and Pseudomonas aeruginosa; and other extremotolerant and extremophilic microbes such as Aspergillus spp., Salinibacter ruber and Haloquadratum walsbyi. Some microbes, such as Escherichia coli, Mycobacterium smegmatis and Pseudoxylaria spp., exhibit characteristics of both weed and non-weed species. We propose that the concept of nonweeds represents a 'dustbin' group that includes species such as Synodropsis spp., Polypaecilum pisce, Metschnikowia orientalis, Salmonella spp., and Caulobacter crescentus. We show that microbial weeds are conceptually distinct from plant weeds, microbial copiotrophs, r-strategists, and other ecophysiological groups of microorganism. Microbial weed species are unlikely to emerge from stationary-phase or other types of closed communities; it is open habitats that select for weed phenotypes. Specific characteristics that are common to diverse types of open habitat are identified, and implications of weed biology and open-habitat ecology are discussed in the context of further studies needed in the fields of environmental and applied microbiology.