907 resultados para Stabilisation of filter
Resumo:
The in-depth oxypropylation of different types of cellulose fibers, namely Avicel, Rayon, Kraft, and Filter Paper, was investigated. New biphasic mono-component materials were obtained, which could be hot-pressed to form films of cellulose fibers dispersed into a thermoplastic matrix. The success of this chemical modification was assessed by FTIR spectroscopy, X-ray diffraction, scanning electron microscopy. differential scanning calorimetry, thermogravimetric analysis and contact angle measurements. The optimization of this process led to the establishment of the optimal molar ratio between the cellulose CH groups and propylene oxide, which varied as a function of the specific morphology of the fibers. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Chemical and spectroscopic methods were used to characterize organic matter transformations during the composting process. Four different residue mixtures were studied: P1 - garden trimmings (GT) only, P2 - GT plus fresh cattle manure, P3 - GT plus orange pomace and P4 - GT plus filter cake. The thermophilic phase was not reached in PI compost, but the P2, P3 and P4 composts showed all three typical process phases. The thermophilic phase and CEC/C ratio stabilized after 90 days, while C/N ratio and the ash content stabilized after 60 days. The increasing E(4)/E(6) ratio indicated oxidation reactions occurring during the process in the material from P2, P3 and P4. The (13)C NMR and FTIR results suggested extraction of both pectin and lignin in the HA-like fraction. The CEC/C ratio, temperature and E(4)/E(6) ratio showed that within 90 days P2, P3 and P4 composts were humified. However, material from P1 did not show characteristics of humified compost. From these data, it is apparent that C/N ratio and ash content are not reliable methods for monitoring the composting process. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
At the age of multi-media, portable electronic devices such as mobile phones, personal digital assistant and handheld gaming systems have increased the demand for high performance displays with low cost production. Inkjet printing color optical filters (COF) for LCD applications seem to be an interesting alternative to decrease the production costs. The advantage of inkjet printing technology is to be fast, accurate, easy to run and cheaper than other technologies. In this master thesis work, we used various disciplines such as optical microscopy, rheology, inkjet printing, profilometering and colorimetry. The specific aim of the thesis was to investigate the feasibility of using company-A pigment formulation in inkjet production of COF for active matrix LCD applications. Ideal viscosity parameters were determined from 10 to 20mPa·s for easy inkjet printing at room temperature. The red pigments used are fully dispersed into the solvent and present an excellent homogenous repartition after printing. Thickness investigations revealed that the printed COF were equal or slightly thicker than typically manufactured ones. The colorimetry investigations demonstrated color coordinates very close to the NTSC red standard. LED backlighting seems to be a valuable solution to combine with the printed COF regarding to the spectrum and color analysis. The results on this thesis will increase the understanding of inkjet printing company-A pigments to produce COF for LCD applications.
Resumo:
The aim of this thesis is to investigate computerized voice assessment methods to classify between the normal and Dysarthric speech signals. In this proposed system, computerized assessment methods equipped with signal processing and artificial intelligence techniques have been introduced. The sentences used for the measurement of inter-stress intervals (ISI) were read by each subject. These sentences were computed for comparisons between normal and impaired voice. Band pass filter has been used for the preprocessing of speech samples. Speech segmentation is performed using signal energy and spectral centroid to separate voiced and unvoiced areas in speech signal. Acoustic features are extracted from the LPC model and speech segments from each audio signal to find the anomalies. The speech features which have been assessed for classification are Energy Entropy, Zero crossing rate (ZCR), Spectral-Centroid, Mean Fundamental-Frequency (Meanf0), Jitter (RAP), Jitter (PPQ), and Shimmer (APQ). Naïve Bayes (NB) has been used for speech classification. For speech test-1 and test-2, 72% and 80% accuracies of classification between healthy and impaired speech samples have been achieved respectively using the NB. For speech test-3, 64% correct classification is achieved using the NB. The results direct the possibility of speech impairment classification in PD patients based on the clinical rating scale.
Resumo:
Recent developments in biological research, has shown that the initial maximum permissible exposure (MPE) limits for protection of workers from risks associated with artificial optical radiations were more stringent than needed. Using the most recent MPE limits for artificial optical radiation this piece of work was focused on the investigation of the level of visible light attenuation needed by automatic welding filters in case of switching failure. Results from the comparison of different exposure standards were employed in investigating the need of Vis/IR and blue light transmittance requirement for automatic welding filters. Real and arbitrary spectra were taken into consideration for the worst and best case scenarios of artificial optical radiations. An excel worksheet developed during the execution of this project took into consideration the exposure from different light sources and the precision of the spectrometer used in measuring the transmittances of a welding filter. The worksheet was developed and tested with known product properties to investigate the validity of its formulation. The conclusion drawn from this project was that attenuation in the light state will be needed for products with the darkest state shade 11 or higher. Also shown is that current welding filter protects the eye well enough even in the case of switching failure.
Resumo:
Service discovery in large scale, open distributed systems is difficult because of the need to filter out services suitable to the task at hand from a potentially huge pool of possibilities. Semantic descriptions have been advocated as the key to expressive service discovery, but the most commonly used service descriptions and registry protocols do not support such descriptions in a general manner. In this paper, we present a protocol, its implementation and an API for registering semantic service descriptions and other task/user-specific metadata, and for discovering services according to these. Our approach is based on a mechanism for attaching structured and unstructured metadata, which we show to be applicable to multiple registry technologies. The result is an extremely flexible service registry that can be the basis of a sophisticated semantically-enhanced service discovery engine, an essential component of a Semantic Grid.
Resumo:
Service discovery in large scale, open distributed systems is difficult because of the need to filter out services suitable to the task at hand from a potentially huge pool of possibilities. Semantic descriptions have been advocated as the key to expressive service discovery, but the most commonly used service descriptions and registry protocols do not support such descriptions in a general manner. In this paper, we present a protocol, its implementation and an API for registering semantic service descriptions and other task/user-specific metadata, and for discovering services according to these. Our approach is based on a mechanism for attaching structured and unstructured metadata, which we show to be applicable to multiple registry technologies. The result is an extremely flexible service registry that can be the basis of a sophisticated semantically-enhanced service discovery engine, an essential component of a Semantic Grid.