965 resultados para Sst
Resumo:
In order to reconstruct the monsoonal variability during the late Holocene we investigated a complete, annually laminated sediment record from the oxygen minimum zone (OMZ) off Pakistan for oxygen isotopes of planktic foraminifera and alkenone-derived sea surface temperatures (SST). Significant SST changes of up to 3°C which cannot be explained by changes in the alkenone-producing coccolithophorid species (inferred from the Gephyrocapsa oceanica / Emiliania huxleyi ratio) suggest that SST changes are driven by changes in the monsoon strength. Our high-(decadal)-resolution data indicate that the late Holocene in the northeastern Arabian Sea was not characterized by a stable uniform climate, as inferred from the Greenland ice cores, but by variations in the dominance of the SW monsoon conditions with significant effects on temperatures. Highest SST fluctuations of up to 3.0°C and 2.5°C were observed for the time interval from 4600 to 3300 years B.P. and during the past 500 years. The significant, short-term SST changes during the past 500 years might be related to climatic instabilities known from the northern latitudes ("Little Ice Age") and confirm global effects. Surface salinity values, reconstructed from delta18O records after correction for temperature-related oxygen isotope fractionation, suggest that in general, the past 5000 years were characterized by higher-than-recent evaporation and more intense SW monsoon conditions. However, between 4600 and 3700 years B.P., evaporation dropped, SW monsoon weakened, and NE monsoon conditions were comparatively enhanced. For the past 1500 years we infer strongly fluctuating monsoon conditions. Comparisons of reconstructed salinity records with ice accumulation data from published Tibetan ice core and Tibetan tree ring width data reveal that during the past 2000 years, enhanced evaporation in the northeastern Arabian Sea correlates with periods of increased ice accumulation in Tibet, and vice versa. This suggests a strong climatic relationship between both monsoon-controlled areas.
Resumo:
Tests of the planktonic foraminifer Globigerinoides ruber (white; d'Orbigny) have become a standard tool for reconstructing past oceanic environments. Paleoceanographers often utilize the Mg/Ca ratios of the foraminiferal tests for reconstructing low-latitude ocean glacial-interglacial changes in sea surface temperatures (SST). We report herein a comparison of Mg/Ca measurements on sample pairs (n = 20) of two G. ruber (white) morphotypes (G. ruber sensu stricto (s.s.) and G. ruber sensu lato (s.l.)) from surface and downcore samples of the western Pacific and Indian Oceans. G. ruber s.s. refers to specimens with spherical chambers sitting symmetrically over previous sutures with a wide, high arched aperture, whereas G. ruber s.l. refers to a more compact test with a diminutive final chamber and small aperture. The G. ruber s.s. specimens generally show significantly higher Mg/Ca ratios compared to G. ruber s.l. Our results from the Mg/Ca ratio analysis suggest that G. ruber s.l. specimens precipitated their shells in slightly colder surface waters than G. ruber s.s. specimens. This conclusion is supported by the differences in delta18O and delta13C values between the two morphotypes. Although it is still unclear if these two morphotypes represent phenotypic variants or sibling species, our findings seem to support the hypothesis of depth and/or seasonal allopatry within a single morphospecies.
Resumo:
This is part 2 of a study examining southwest African continental margin sediments from nine sites on a north-south transect from the Congo Fan (4°S) to the Cape Basin (30°S) representing two glacial (MIS 2 and 6a) and two interglacial stages (MIS 1 and 5e). Contents, distribution patterns, and molecular stable carbon isotope signatures of long-chain n-alkanes (C27-C33) and n-alkanols (C22-C32) as indicators of land plant vegetation of different biosynthetic types were correlated with concentrations and distributions of pollen taxa in sediments of the same time horizons. Selected single pollen type data reveal details of vegetation changes, but the overall picture is best illustrated by summing pollen known to predominantly derive from C4 plants or C4 plus CAM plants. The C4 plant signals in the biomarkers are recorded in the delta13C data and in the abundances of C31 and C33 n-alkanes, and the C32 n-alkanol. Calculated clusters of wind trajectories for austral summer and winter situations for the Holocene and the Last Glacial Maximum afford information on the source areas for the lipids and pollen and their transport pathways to the ocean. This multidisciplinary approach provides clear evidence of latitudinal differences in leaf wax lipid and pollen composition, with the Holocene sedimentary data paralleling the current major phytogeographic zonations. The northern sites (Congo Fan area and northern Angola Basin) get most of their terrestrial material from the Congo Basin and the Angolan highlands dominated by C3 plants. Airborne particulates derived from the western and central South African hinterland dominated by deserts, semideserts, and savannah regions are rich in organic matter from C4 plants. As can be expected from the present and glacial positions of the phytogeographic zones, the carbon isotopic signatures of n-alkanes and n-alkanols both become isotopically more enriched in 13C from north to south. In the northern part of the transect the relative importance of C4 plant indicators is higher during the glacials than in the interglacials, indicating a northward extension of arid zones favoring grass vegetation. In the south, where grass-rich vegetation merges into semidesert and desert, the difference in C4 plant indicators is small.
Resumo:
A high-resolution planktonic foraminifer record from a core recovered from the South China Sea (SCS) (Sonne 17938-2: 19°47.2'N, 117° 32.3E; 2840 m; Delta t c. 250-1000 years) shows rapid millennial-scale changes in the western Pacific marginal sea climate during the last 30,000 years. The SCS is the largest western Pacific marginal sea off the southeast Asian continent, the area today dominated by seasonal monsoon changes. Quantitative analyses of planktonic foraminifer faunal abundance data frorn the core indicate large downcore variations in the relative abundances of the dominant taxa since about 30,000 years ago in the isotope stage 3. Further analyses indicate that the abundance of G. inflata, a good indicator species for cold SST (~13°-19°C) and deep MLD (~100-125 m) waters shows abrupt shifts. During stages 2 and 3, the abundance record of G. infiata tends to be punctuated by quasi-periodie short intervals (~2000-3000 yrs) where its abundance reaches 15% or greater, superimposed on generally low (5-10%) background values. This pattern suggests an instability of surface ocean conditions of the SCS during the past 30,000 years. The abrupt abundance changes of G. infiata correlate well with similar climatic changes observed from a GISP2 ice core 8180, and North Atlantic core DSDP 609 N. pachyderma (s.) and lithic grain abundances during 'Heinrich evcnts'. These results suggest that the millennial-scale variability of climate is not peculiar to the Atlantic region. Apparently, the rapid SCS climatic changes during Heinrich events are driven by effective mechanisms, of particularly the effects of shifts in the latitudinal position of the Siberia High Pressure System.
Resumo:
The relationship between planktonic and benthic foraminiferal stable-isotope values and oceanographic conditions and factors controlling isotopic variations are discussed on the basis of oxygen and carbon isotopic analyses of 192 modern surface and Last Glacial Maximum (LGM) samples from the South China Sea (SCS). The harmonic variation of benthic delta18O in surface sediments with water depth and temperature implies that the temperature is the main factor influencing benthic delta18O variations. Planktonic delta18O fluctuates with sea surface temperature (SST) and salinity (SSS). The N-S temperature gradient results in planktonic delta18O decreasing from the northeast to the south. Cool, saline waters driven by the winter monsoon are interpreted to have been responsible for the high delta18O values in the northeast SCS. The East Asian monsoons not only bring nutrients into the South China Sea and maintain high nutrient concentration levels at the southwestern and northeastern ends, which cause depleted delta13C both in planktonic (surface) and benthic (bottom) samples but also reduce planktonic/benthic delta18O differences. The distribution of delta18O and delta13C in the surface and LGM samples are strikingly similar, indicating that the impact of SST and SSS has been maintained, and nutrient inputs, mainly from the northeastern and southwestern ends, have been controlled by monsoons since the LGM. Comparisons of the modern and LGM delta18O indicate a difference of about 3.6 °C in bottom-water temperature and a large surface-to-bottom temperature gradient during the LGM as compared to today.
Resumo:
A high-resolution sea surface temperature and paleoproductivity reconstruction on a sedimentary record collected at 36°S off central-south Chile (GeoB 7165-1, 36°33'S, 73°40'W, 797 m water depth, core length 750 cm) indicates that paleoceanographic conditions changed abruptly between 18 and 17 ka. Comparative analysis of several cores along the Chilean continental margin (30°-41°S) suggests that the onset and the pattern of deglacial warming was not uniform off central-south Chile due to the progressive southward migration of the Southern Westerlies and local variations in upwelling. Marine productivity augmented rather abruptly at 13-14 ka, well after the oceanographic changes.We suggest that the late deglacial increase in paleoproductivity off central-south Chile reflects the onset of an active upwelling system bringing nutrient-rich, oxygen-poor Equatorial SubsurfaceWater to the euphotic zone, and a relatively higher nutrient load of the Antarctic Circumpolar Current. During the Last Glacial Maximum, when the Southern Westerlies were located further north, productivity off central-south Chile, in contrast to off northern Chile, was reduced due to direct onshore-blowing winds that prevented coastal upwelling and export production.
Resumo:
On the basis of the radiocarbon (14C) plateau-tuning method a new age model for Timor Sea Core MD01-2378 was established. It revealed a precise centennial-scale phasing of climate events in the ocean, cryo-, and atmosphere during the last deglacial and provides important new insights into causal linkages controlling events of global climate change. At Site MD01-2378 reservoir ages of surface waters dropped from 1600 yr prior to 20 cal ka to 250-500 yr after 18.8 cal ka. This evidence was crucial for generating a high-resolution age model for deglacial events in the Indo-Pacific Warm Pool. Sea-surface temperatures (SST) started to change near 18.8 cal ka, that is ~500 yr after the start of, presumably northern hemispheric, deglacial melt and sea level rise as shown by the benthic foraminiferal oxygen isotope ratio (d18O). However, the SST rise occurred 500-1000 yr prior to the onset of deglacial Antarctic warming and the first major rise in atmospheric carbon dioxide at about 18 ka. The increase in SST may partly reflect reduced seasonal upwelling of cold subsurface waters along the eastern margin of the Indian Ocean, which is reflected by a doubling of the thermal gradient between the sea surface and the thermocline, a halving of chlorin productivity from 19 to 18.5 cal ka, and in particular, by the strong decrease in surface water reservoir ages. Two significant increases in deglacial Timor Sea surface salinities from 19-18.5 and 15.5-14.5 cal ka, may partly reflect the deglacial increase in the distance of local river mouths, partly an inter-hemispheric millennial-scale see-saw in tropical monsoon intensity, possibly linked to a deglacial increase in the dominance of Pacific El Niño regimes over Heinrich stadial 1.
Resumo:
About 34 million years ago, Earth's climate shifted from a relatively ice-free world to one with glacial conditions on Antarctica characterized by substantial ice sheets. How Earth's temperature changed during this climate transition remains poorly understood, and evidence for Northern Hemisphere polar ice is controversial. Here, we report proxy records of sea surface temperatures from multiple ocean localities and show that the high-latitude temperature decrease was substantial and heterogeneous. High-latitude (45 degrees to 70 degrees in both hemispheres) temperatures before the climate transition were ~20°C and cooled an average of ~5°C. Our results, combined with ocean and ice-sheet model simulations and benthic oxygen isotope records, indicate that Northern Hemisphere glaciation was not required to accommodate the magnitude of continental ice growth during this time.
Resumo:
Stable isotope analyses of marine bivalve growth increment samples have been used to estimate early Oligocene (29.4 - 31.2) Ma and early Miocene (24.0 Ma) seafloor palaeotemperature from the southwestern continental margin of the Ross Sea. Measured d18O values average +2.5 ? in the early Miocene and range between +1.26 to +3.24 ? in the early Oligocene. The results show that palaeoceanographic conditions in McMurdo Sound during the mid-Cenozoic were significantly different from those of today. The minimum estimated spring through late summer seasonal temperature range was 3°C during the early Miocene and between 1 and 5°C during the early Oligocene. This compares to the equivalent modern day range of <0.5°C within the sound. Absolute seawater temperatures at <100 m depth were of the order of 5 to 7°C during both time slices, compared to modern day values of -1.4 to - 1.9°C in the same area. The results are in broad agreement with early Oligocene Mg/Ca temperature estimates from deep Atlantic foraminifera as well as estimates from local terrestrial palynology and palaeobotany.
Resumo:
Sediments recovered at ODP Site 984 on the Reykjanes Ridge provided multicentennial-scale records (SST, planktic and benthic delta18O, IRD and magnetic susceptibility) of Late Pliocene climate change over the onset of Northern Hemisphere glaciation (NHG), 2.95-2.82 Ma. Short-term climate variations prior and after the onset of continent-wide glaciation were compared to test the hypothesis, whether Dansgaard-Oeschger (DO) cycles may have been triggered by continental ice breakouts. By means of spectral analyses for two selected interglacial stages prior to and after NHG (G15 and G1), we found that climate variability resembled that of the Holocene and the mid-Pliocene warm period. In contrast, DO-like periodicities near 1470, 2900, and 4400 yr indeed only occurred in glacial stages after the onset of NHG (G14, G6, and 104), but hardly in stage G20 prior to the onset. These results suggest a causal link between DO cycles and the Late Pliocene onset of major NHG and ice breakouts in the North Atlantic. This data set provides all primary data and spectral analysis related to this scientific work.
Resumo:
The evolution of the Southern Ocean climate during the late Eocene-late Oligocene interval is examined through highresolution, quantitative calcareous nannofossil analyses on samples from the Southern Ocean sections on Maud Rise and Kerguelen Plateau. We determined the abundance patterns of the counted species to clarify the biostratigraphy, which we correlated with high-resolution magnetostratigraphy [Roberts, A.P., Bicknell, S.J., Byatt, J., Bohaty, S.M., Florindo, F., Harwood, D.M., 2003a. Magnetostratigraphic calibration of Southern Ocean diatom datums from the Eocene-Oligocene of Kerguelen Plateau (Ocean Drilling Program Sites 744 and 748). In: Florindo, F., Cooper, A.K., O'Brien, P.A. (Eds.), Antarctic Cenozoic Palaeoenvironments: Geologic Record and Models. Palaeogeogr., Palaeoclimatol., Palaeoecol. 198 145-168; Florindo, F., Roberts, A.P., in press. Eocene-Oligocene magnetobiochronology of ODP Sites 689 and 690, Maud Rise, Weddell Sea, Antarctica. Geol. Soc. Am. Bull.], and used this data to interpret paleoceanographic changes through the late Eocene to late Oligocene. Percentage plots of the individual species, compared with R-mode principal component and cluster analysis results, allowed us to divide the assemblages into three groups: temperate-water taxa, cool-water taxa, and no temperature-affinity taxa. We attempt correlations between these paleoecological groups and the major sea-surface temperature (SST) variations with tectonic and paleoceanographic changes in the Southern Ocean. During the late Eocene, the nannofossil assemblage data reveal that there were several minor SST decreases (coolings) from 36 to 34 Ma, before the Eocene/Oligocene (E/O) boundary. A sharp cooling event, dated at 33.54 Ma (earliest Oligocene), occurred about 160 kyr after the E/O boundary, which is dated at 33.7 Ma. Relatively stable, cool conditions are interpreted to persist until the latest Oligocene, when an increase in abundance of temperate-water taxa, which corresponds to an antithetical decrease in abundance of cool-water indicators, is recorded. On the basis of our dating, the opening of the Drake Passage, allowing shallow-water circulation, began by 33.54 Ma at the latest, while the establishment of deep-water connections through the Tasmanian Gateway occurred at 33 Ma, as suggested by Exon et al. [Proc. ODP, Init. Rep. 189 (2001) 1].