998 resultados para Spitsbergen


Relevância:

10.00% 10.00%

Publicador:

Resumo:

On 20 March 2015, a total solar eclipse occurred over Ny-Ålesund (78.9° N, 11.9° E), Svalbard, in the high Arctic. It was the first time that the surface radiation components during the totality of a solar eclipse were measured by a Baseline Surface Radiation Network (BSRN) station. With the Ny-Ålesund long-term radiation data set as background (available at doi:10.1594/PANGAEA.150000), we present here the peculiarities of the radiation components and basic meteorology observed during the eclipse event. The supplementary data set contains the basic BSRN radiation and surface meteorological data in 1 min resolution for March 2015, and is available at doi:10.1594/PANGAEA.854326. The eclipse radiation data will be a useful auxiliary data set for further studies on micrometeorological surface-atmosphere exchange processes in the Svalbard environment, and may serve as a test case for radiative transfer studies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

At the western continental margin of the Barents Sea, 75°N, hemipelagic sediments provide a record of Holocene climate change with a time resolution of 10-70 years. Planktic foraminifera counts reveal a very early Holocene thermal optimum 10.7-7.7 kyr BP, with summer sea surface temperatures (SST) of 8°C and a much enhanced West Spitsbergen Current. There was a short cooling between 8.8 and 8.2 kyr BP. In the middle and late Holocene summer, SST dropped to 2.5°-5.0°C, indicative of reduced Atlantic heat advection, except for two short warmings near 2.2 and 1.6 kyr BP. Distinct quasi-periodic spikes of coarse sediment fraction (with large portions of lithic grains, benthic and planktic foraminifera) record cascades of cold, dense winter water down the continental slope as a result of enhanced seasonal sea ice formation and storminess on the Barents shelf over the entire Holocene. The spikes primarily cluster near recurrence intervals of 400-650 and 1000-1350 years, when traced over the entire Holocene, but follow significant 885-/840- and 505-/605-year periodicities in the early Holocene. These non-stationary periodicities mimic the Greenland-[Formula: See Text]Be variability, which is a tracer of solar forcing. Further significant Holocene periodicities of 230, (145) and 93 years come close to the deVries and Gleissberg solar cycles.