902 resultados para South West Coast


Relevância:

80.00% 80.00%

Publicador:

Resumo:

The carrageenophyte Kappaphycus alvarezii was introduced in 1995 and vegetatively propagated in Ubatuba, Sao Paulo State, Brazil, for the purpose of commercial cultivation. This species produces tetraspores mainly in the austral summer and fall. Tetraspore germination and survival were studied under different conditions of temperature, photon flux density, and photoperiod in the laboratory. Field experiments were also carried out. Although tetraspores of K. alvarezii germinated, they had low survival rates, most dying after 20 days. Recruitment of K. alvarezii tetraspores did not occur in experiments conducted in the field. The results indicated that the establishment of K. alvarezii via spore production in the natural environment of the south-east coast of Brazil is rather remote.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Hybrid Photovoltaic Thermal (PVT) collectors are an emerging technology that combines PV and solar thermal systems in a single solar collector producing heat and electricity simultaneously. The focus of this thesis work is to evaluate the performance of unglazed open loop PVT air system integrated on a garage roof in Borlänge. As it is thought to have a significant potential for preheating ventilation of the building and improving the PV modules electrical efficiency. The performance evaluation is important to optimize the cooling strategy of the collector in order to enhance its electrical efficiency and maximize the production of thermal energy. The evaluation process involves monitoring the electrical and thermal energies for a certain period of time and investigating the cooling effect on the performance through controlling the air mass flow provided by a variable speed fan connected to the collector by an air distribution duct. The distribution duct transfers the heated outlet air from the collector to inside the building. The PVT air collector consists of 34 Solibro CIGS type PV modules (115 Wp for each module) which are roof integrated and have replaced the traditional roof material. The collector is oriented toward the south-west with a tilt of 29 ᵒ. The collector consists of 17 parallel air ducts formed between the PV modules and the insulated roof surface. Each air duct has a depth of 0.05 m, length of 2.38 m and width of 2.38 m. The air ducts are connected to each other through holes. The monitoring system is based on using T-type thermocouples to measure the relevant temperatures, air sensor to measure the air mass flow. These parameters are needed to calculate the thermal energy. The monitoring system contains also voltage dividers to measure the PV modules voltage and shunt resistance to measure the PV current, and AC energy meters which are needed to calculate the produced electrical energy. All signals recorded from the thermocouples, voltage dividers and shunt resistances are connected to data loggers. The strategy of cooling in this work was based on switching the fan on, only when the difference between the air duct temperature (under the middle of top of PV column) and the room temperature becomes higher than 5 °C. This strategy was effective in term of avoiding high electrical consumption by the fan, and it is recommended for further development. The temperature difference of 5 °C is the minimum value to compensate the heat losses in the collecting duct and distribution duct. The PVT air collector has an area of (Ac=32 m2), and air mass flow of 0.002 kg/s m2. The nominal output power of the collector is 4 kWppv (34 CIGS modules with 115 Wppvfor each module). The collector produces thermal output energy of 6.88 kWth/day (0.21 kWth/m2 day) and an electrical output energy of 13.46 kWhel/day (0.42 kWhel/m2 day) with cooling case. The PVT air collector has a daily thermal energy yield of 1.72 kWhth/kWppv, and a daily PV electrical energy yield of 3.36 kWhel /kWppv. The fan energy requirement in this case was 0.18 kWh/day which is very small compared to the electrical energy generated by the PV collector. The obtained thermal efficiency was 8 % which is small compared to the results reported in literature for PVT air collectors. The small thermal efficiency was due to small operating air mass flow. Therefore, the study suggests increasing the air mass flow by a factor of 25. The electrical efficiency was fluctuating around 14 %, which is higher than the theoretical efficiency of the PV modules, and this discrepancy was due to the poor method of recording the solar irradiance in the location. Due to shading effect, it was better to use more than one pyranometer.