964 resultados para Soluble Methane Monooxygenase


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The level of body iron storage and the erythropoietic need for iron are indicated by the serum levels of ferritin and soluble transferrin receptor (sTfR), respectively. A meta-analysis of five genome-wide association studies on sTfR and ferritin revealed novel association to the PCSK7 and TMPRSS6 loci for sTfR and the HFE locus for both parameters. The PCSK7 association was the most significant (rs236918, P = 1.1 × 10E-27) suggesting that proprotein convertase 7, the gene product of PCSK7, may be involved in sTfR generation and/or iron homeostasis. Conditioning the sTfR analyses on transferrin saturation abolished the HFE signal and substantially diminished the TMPRSS6 signal while the PCSK7 association was unaffected, suggesting that the former may be mediated by transferrin saturation whereas the PCSK7-associated effect on sTfR generation appears to be more direct.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Visceral fat differs from subcutaneous fat by higher local inflammation and increased release of IL-6 and free fatty acids (FFA) which contribute to hepatic steatosis. IL-6 has been shown to upregulate the monocyte/macrophage specific receptor CD163 whose soluble form, sCD163, is increased in inflammatory diseases. Here, it was analyzed whether CD163 and sCD163 are differentially expressed in the human fat depots and fatty liver. CD163 mRNA and protein were similarly expressed in paired samples of human visceral and subcutaneous fat, and comparable levels in portal venous and systemic venous blood of liver-healthy controls indicate that release of sCD163 from visceral adipose tissue was not increased. CD163 was also similarly expressed in steatotic liver when compared to non-steatotic tissues and sCD163 was almost equal in the respective sera. Concentrations of sCD163 were not affected when passing the liver excluding substantial hepatic removal/release of this protein. A high concentration of IL-6 upregulated CD163 protein while physiological doses had no effect. However, sCD163 was not increased by any of the IL-6 doses tested. FFA even modestly decreased CD163 and sCD163. The anti-inflammatory mediators fenofibrate, pioglitazone, and eicosapentaenoic acid (EPA) did not influence sCD163 levels while CD163 was reduced by EPA. These data suggest that in humans neither visceral fat nor fatty liver are major sources of sCD163.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A precise synchronization of different climate records is indispensable for a correct dynamical interpretation of paleoclimatic data. A chronology for the TALDICE ice core from the Ross Sea sector of East Antarctica has recently been presented based on methane synchronization with Greenland and the EDC ice cores and δ18Oice synchronization with EDC in the bottom part (TALDICE-1). Using new high-resolution methane data obtained with a continuous flow analysis technique, we present a refined age scale for the age interval from 55–112 thousand years (ka) before present, where TALDICE is synchronized with EDC. New and more precise tie points reduce the uncertainties of the age scale from up to 1900 yr in TALDICE-1 to below 1100 yr over most of the refined interval and shift the Talos Dome dating to significantly younger ages during the onset of Marine Isotope Stage 3. Thus, discussions of climate dynamics at sub-millennial time scales are now possible back to 110 ka, in particular during the inception of the last ice age. Calcium data of EDC and TALDICE are compared to show the impact of the refinement to the synchronization of the two ice cores not only for the gas but also for the ice age scale.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Methane and nitrous oxide are important greenhouse gases which show a strong increase in atmospheric mixing ratios since pre-industrial time as well as large variations during past climate changes. The understanding of their biogeochemical cycles can be improved using stable isotope analysis. However, high-precision isotope measurements on air trapped in ice cores are challenging because of the high susceptibility to contamination and fractionation. Here, we present a dry extraction system for combined CH4 and N2O stable isotope analysis from ice core air, using an ice grating device. The system allows simultaneous analysis of δD(CH4) or δ13C(CH4), together with δ15N(N2O), δ18O(N2O) and δ15N(NO+ fragment) on a single ice core sample, using two isotope mass spectrometry systems. The optimum quantity of ice for analysis is about 600 g with typical "Holocene" mixing ratios for CH4 and N2O. In this case, the reproducibility (1σ ) is 2.1‰ for δD(CH4), 0.18‰ for δ13C(CH4), 0.51‰ for δ15N(N2O), 0.69‰ for δ18O(N2O) and 1.12‰ for δ15N(NO+ fragment). For smaller amounts of ice the standard deviation increases, particularly for N2O isotopologues. For both gases, small-scale intercalibrations using air and/or ice samples have been carried out in collaboration with other institutes that are currently involved in isotope measurements of ice core air. Significant differences are shown between the calibration scales, but those offsets are consistent and can therefore be corrected for.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Natural methane (CH4) emissions from wet ecosystems are an important part of today's global CH4 budget. Climate affects the exchange of CH4 between ecosystems and the atmosphere by influencing CH4 production, oxidation, and transport in the soil. The net CH4 exchange depends on ecosystem hydrology, soil and vegetation characteristics. Here, the LPJ-WHyMe global dynamical vegetation model is used to simulate global net CH4 emissions for different ecosystems: northern peatlands (45°–90° N), naturally inundated wetlands (60° S–45° N), rice agriculture and wet mineral soils. Mineral soils are a potential CH4 sink, but can also be a source with the direction of the net exchange depending on soil moisture content. The geographical and seasonal distributions are evaluated against multi-dimensional atmospheric inversions for 2003–2005, using two independent four-dimensional variational assimilation systems. The atmospheric inversions are constrained by the atmospheric CH4 observations of the SCIAMACHY satellite instrument and global surface networks. Compared to LPJ-WHyMe the inversions result in a~significant reduction in the emissions from northern peatlands and suggest that LPJ-WHyMe maximum annual emissions peak about one month late. The inversions do not put strong constraints on the division of sources between inundated wetlands and wet mineral soils in the tropics. Based on the inversion results we diagnose model parameters in LPJ-WHyMe and simulate the surface exchange of CH4 over the period 1990–2008. Over the whole period we infer an increase of global ecosystem CH4 emissions of +1.11 Tg CH4 yr−1, not considering potential additional changes in wetland extent. The increase in simulated CH4 emissions is attributed to enhanced soil respiration resulting from the observed rise in land temperature and in atmospheric carbon dioxide that were used as input. The long-term decline of the atmospheric CH4 growth rate from 1990 to 2006 cannot be fully explained with the simulated ecosystem emissions. However, these emissions show an increasing trend of +3.62 Tg CH4 yr−1 over 2005–2008 which can partly explain the renewed increase in atmospheric CH4 concentration during recent years.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Anaerobic digestion of food scraps has the potential to accomplish waste minimization, energy production, and compost or humus production. At Bucknell University, removal of food scraps from the waste stream could reduce municipal solid waste transportation costs and landfill tipping fees, and provide methane and humus for use on campus. To determine the suitability of food waste produced at Bucknell for high-solids anaerobic digestion (HSAD), a year-long characterization study was conducted. Physical and chemical properties, waste biodegradability, and annual production of biodegradable waste were assessed. Bucknell University food and landscape waste was digested at pilot-scale for over a year to test performance at low and high loading rates, ease of operation at 20% solids, benefits of codigestion of food and landscape waste, and toprovide digestate for studies to assess the curing needs of HSAD digestate. A laboratory-scale curing study was conducted to assess the curing duration required to reduce microbial activity, phytotoxicity, and odors to acceptable levels for subsequent use ofhumus. The characteristics of Bucknell University food and landscape waste were tested approximately weekly for one year, to determine chemical oxygen demand (COD), total solids (TS), volatile solids (VS), and biodegradability (from batch digestion studies). Fats, oil, and grease and total Kjeldahl nitrogen were also tested for some food waste samples. Based on the characterization and biodegradability studies, Bucknell University dining hall food waste is a good candidate for HSAD. During batch digestion studies Bucknell University food waste produced a mean of 288 mL CH4/g COD with a 95%confidence interval of 0.06 mL CH4/g COD. The addition of landscape waste for digestion increased methane production from both food and landscape waste; however, because the landscape waste biodegradability was extremely low the increase was small.Based on an informal waste audit, Bucknell could collect up to 100 tons of food waste from dining facilities each year. The pilot-scale high-solids anaerobic digestion study confirmed that digestion ofBucknell University food waste combined with landscape waste at a low organic loading rate (OLR) of 2 g COD/L reactor volume-day is feasible. During low OLR operation, stable reactor performance was demonstrated through monitoring of biogas production and composition, reactor total and volatile solids, total and soluble chemical oxygendemand, volatile fatty acid content, pH, and bicarbonate alkalinity. Low OLR HSAD of Bucknell University food waste and landscape waste combined produced 232 L CH4/kg COD and 229 L CH4/kg VS. When OLR was increased to high loading (15 g COD/L reactor volume-day) to assess maximum loading conditions, reactor performance became unstable due to ammonia accumulation and subsequent inhibition. The methaneproduction per unit COD also decreased (to 211 L CH4/kg COD fed), although methane production per unit VS increased (to 272 L CH4/kg VS fed). The degree of ammonia inhibition was investigated through respirometry in which reactor digestate was diluted and exposed to varying concentrations of ammonia. Treatments with low ammoniaconcentrations recovered quickly from ammonia inhibition within the reactor. The post-digestion curing process was studied at laboratory-scale, to provide a preliminary assessment of curing duration. Digestate was mixed with woodchips and incubated in an insulated container at 35 °C to simulate full-scale curing self-heatingconditions. Degree of digestate stabilization was determined through oxygen uptake rates, percent O2, temperature, volatile solids, and Solvita Maturity Index. Phytotoxicity was determined through observation of volatile fatty acid and ammonia concentrations.Stabilization of organics and elimination of phytotoxic compounds (after 10–15 days of curing) preceded significant reductions of volatile sulfur compounds (hydrogen sulfide, methanethiol, and dimethyl sulfide) after 15–20 days of curing. Bucknell University food waste has high biodegradability and is suitable for high-solids anaerobic digestion; however, it has a low C:N ratio which can result in ammonia accumulation under some operating conditions. The low biodegradability of Bucknell University landscape waste limits the amount of bioavailable carbon that it can contribute, making it unsuitable for use as a cosubstrate to increase the C:N ratio of food waste. Additional research is indicated to determine other cosubstrates with higher biodegradabilities that may allow successful HSAD of Bucknell University food waste at high OLRs. Some cosubstrates to investigate are office paper, field residues, or grease trap waste. A brief curing period of less than 3 weeks was sufficient to produce viable humus from digestate produced by low OLR HSAD of food and landscape waste.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work presents a new, field-deployable technique for continuous, high-resolution measurements of methane mixing ratios from ice cores. The technique is based on a continuous flow analysis system, where ice core samples cut along the long axis of an ice core are melted continuously. The past atmospheric air contained in the ice is separated from the melt water stream via a system for continuous gas extraction. The extracted gas is dehumidified and then analyzed by a Wavelength Scanned-Cavity Ring Down Spectrometer for methane mixing ratios. We assess the performance of the new measurement technique in terms of precision (±0.8 ppbv, 1σ), accuracy (±8 ppbv), temporal (ca. 100 s), and spatial resolution (ca. 5 cm). Using a firn air transport model, we compare the resolution of the measurement technique to the resolution of the atmospheric methane signal as preserved in ice cores in Greenland. We conclude that our measurement technique can resolve all climatically relevant variations as preserved in the ice down to an ice depth of at least 1980 m (66 000 yr before present) in the North Greenland Eemian Ice Drilling ice core. Furthermore, we describe the modifications, which are necessary to make a commercially available spectrometer suitable for continuous methane mixing ratio measurements from ice cores.