915 resultados para Solar Radiation


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The photochemistry of pesticides triadimenol and triadimefon was studied on cellulose and beta-cyclodextrin (beta-CD) in controlled and natural conditions, using diffuse reflectance techniques and chromatographic analysis. The photochemistry of triadimenol occurs from the chlorophenoxyl moiety, while the photodegradation of triadimefon also involves the carbonyl group. The formation of 4-chlorophenoxyl radical is one of the major reaction pathways for both pesticides and leads to 4-chlorophenol. Triadimenol also undergoes photooxidation and dechlorination, leading to triadimefon and dechlorinated triadimenol, respectively. The other main reaction process of triadimefon involves alpha-cleavage from the carbonyl group, leading to decarbonylated compounds. Triadimenol undergoes photodegradation at 254 nm but was found to be stable at 313 nm, while triadimefon degradates in both conditions. Both pesticides undergo photochemical decomposition under solar radiation, being the initial degradation of rate per unit area of triadimefon 1 order of magnitude higher than the observed for triadimenol in both supports. The degradation rates of the pesticides were somewhat lower in beta-CD than on cellulose. Photoproduct distribution of triadimenol and triadimefon is similar for the different irradiation conditions, indicating an intramolecular energy transfer from the chlorophenoxyl moiety to the carbonyl group in the latter pesticide.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The photochemistry of 4-chlorophenol (4-CP) was studied on silica and cellulose, using time-resolved diffuse reflectance techniques and product degradation analysis. The results have shown that the photochemistry of 4-CP depends on the support, on the concentration, and also on the sample preparation method. Transient absorption and photoproduct results can be understood by assuming the formation of the carbene 4-oxocyclohexa-2,5-dienylidene in both supports. On cellulose, at concentrations lower than 10 mumol g(-1), the carbene leads to the unsubstituted phenoxyl radical, and phenol is the main degradation product. At higher concentrations a new transient resulting from phenoxyl radicals coupling was also observed, and dihydroxybiphenyls are also formed. The reaction of the carbene with ground-state 4-CP was also detected through the formation of 5-chloro-2,4'-dihydroxybiphenyl. 4-Chlorophenoxyl radical and degradations products resulting from its coupling were also detected. Oxygen has little effect on the photochemistry of 4-CP on cellulose. On silica the transient benzoquinone O-oxide was formed in the presence of oxygen. Benzoquinone and hydroquinone are the main degradation products. In well-dried samples the formation of hydroquinone is reduced. At higher concentrations the same products as detected on cellulose were observed. 4-CP undergoes slow photochemical decomposition under solar radiation in both supports. The same main degradation products were observed in these conditions.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This study evaluates the influence of depth and environmental parameters on the development of Gracilaria birdiae Plastino & Oliveira (Gracilariaceae Rhodophyta) in an organic shrimp pound (Litopenaeus vannamei) under euthrophical conditions. PVC structures (module) witch four ropes laden with 150 g of macroalgae each, were kept during 35 days at three different depths (surface, 10 and 20 cm depth). Wet biomass weighing and environmental parameters (temperature, salinity, turbidity, pH, transparence, precipitation, evaporation, insolation, accumulated solar radiation, nitrite, nitrate, ammonium and orthophosphate) were measured weekly. At all three proposed depths, the macroalgae displayed a higher biomass at the end of experiment than at the initial inoculations. The module kept at a 10 cm depth presented the greatest average biomass (186,3), followed by that kept at 20 cm (180,4 g) and the surface module (169,9 g). Biomass variations showed algae to suffer the direct effects of depths. Biomass loss was associated with the factors that influence light penetration, such as sediment deposits above the thallus, rate of evaporation and precipitation. The smallest loses occurred in the algae kept on surface (0,16%), followed by the algae kept at 20 cm (0,20%) and 10 cm (0,22%). The specific growth rate (SGR) of G. birdiae showed no significant difference between the three depths nor the sample periods. Nevertheless, the modules kept at 10 and 20 cm depths presented similar growth evolution, both growing 0,38%·per day-1, while the module kept on surface had an average SGR of 0,36%·day-1. The models related to growth rate demonstrated temperature, salinity, pH, orthophosphate, ammonium, precipitation and turbidity as the principal environmental parameters influencing the development of G. birdiae

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Intensification of permafrost disturbances such as active layer detachments (ALDs) and retrogressive thaw slumps (RTS) have been observed across the circumpolar Arctic. These features are indicators of unstable conditions stemming from recent climate warming and permafrost degradation. In order to understand the processes interacting to give rise to these features, a multidisciplinary approach is required; i.e., interactions between geomorphology, hydrology, vegetation and ground thermal conditions. The goal of this research is to detect and map permafrost disturbance, predict landscape controls over disturbance and determine approaches for monitoring disturbance, all with the goal of contributing to the mitigation of permafrost hazards. Permafrost disturbance inventories were created by applying semi-automatic change detection techniques to IKONOS satellite imagery collected at the Cape Bounty Arctic Watershed Observatory (CBAWO). These methods provide a means to estimate the spatial distribution of permafrost disturbances for a given area for use as an input in susceptibility modelling. Permafrost disturbance susceptibility models were then developed using generalized additive and generalized linear models (GAM, GLM) fitted to disturbed and undisturbed locations and relevant GIS-derived predictor variables (slope, potential solar radiation, elevation). These models successfully delineated areas across the landscape that were susceptible to disturbances locally and regionally when transferred to an independent validation location. Permafrost disturbance susceptibility models are a first-order assessment of landscape susceptibility and are promising for designing land management strategies for remote permafrost regions. Additionally, geomorphic patterns associated with higher susceptibility provide important knowledge about processes associated with the initiation of disturbances. Permafrost degradation was analyzed at the CBAWO using differential interferometric synthetic aperture radar (DInSAR). Active-layer dynamics were interpreted using inter-seasonal and intra-seasonal displacement measurements and highlight the importance of hydroclimatic factors on active layer change. Collectively, these research approaches contribute to permafrost monitoring and the assessment of landscape-scale vulnerability in order to develop permafrost disturbance mitigation strategies.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Mature berries of Pinot Noir grapevines were sampled across a latitudinal gradient in Europe, from southern Spain to central Germany. Our aim was to study the influence of latitude-dependent environmental factors on the metabolite composition (mainly phenolic compounds) of berry skins. Solar radiation variables were positively correlated with flavonols and flavanonols and, to a lesser extent, with stilbenes and cinnamic acids. The daily means of global and erythematic UV solar radiation over long periods (bud break-veraison, bud break-harvest, and veraison-harvest), and the doses and daily means in shorter development periods (5–10 days before veraison and harvest) were the variables best correlated with the phenolic profile. The ratio between trihydroxylated and monohydroxylated flavonols, which was positively correlated with antioxidant capacity, was the berry skin variable best correlated with those radiation variables. Total flavanols and total anthocyanins did not show any correlation with radiation variables. Air temperature, degree days, rainfall, and aridity indices showed fewer correlations with metabolite contents than radiation. Moreover, the latter correlations were restricted to the period veraison-harvest, where radiation, temperature, and water availability variables were correlated, making it difficult to separate the possible individual effects of each type of variable. The data show that managing environmental factors, in particular global and UV radiation, through cultural practices during specific development periods, can be useful to promote the synthesis of valuable nutraceuticals and metabolites that influence wine quality.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The fact that most of the large scale solar PV plants are built in arid and semi-arid areas where land availability and solar radiation is high, it is expected the performance of the PV plants in such locations will be affected significantly due to high cell temperature as well as due to soiling. Therefore, it is essential to study how the different PV module technologies will perform in such geographical locations to ensure a consistent and reliable power delivery over the lifetime of the PV power plants. As soiling is strongly dependent on the climatic conditions of a particular location a test station, consisted of about 24 PV modules and a well-equipped weather station, was built within the fences of Scatec’s 75 MW Kalkbult solar PV plant in South Africa. This study was performed to a better understand the effect of soiling by comparing the relative power generation by the cleaned modules to the un-cleaned modules. Such knowledge can enable more quantitative evaluations of the cleaning strategies that are going to be implemented in bigger solar PV power plants. The data collected and recorded from the test station has been analyzed at IFE, Norway using a MatLab script written for this thesis project. This thesis work has been done at IFE, Norway in collaboration with Stellenbosch University in South Africa and Scatec Solar a Norwegian independent power producer company. Generally for the polycrystalline modules it is found that the average temperature corrected efficiency during the period of the experiment has been 15.00±0.08 % and for the thin film-CdTe with ARC is 11.52% and for the thin film without ARC is about 11.13% with standard uncertainty of ±0.01 %. Besides, by comparing the initial relative average efficiency of the polycrystalline-Si modules when all the modules have been cleaned for the first time and the final relative efficiency; after the last cleaning schedule which is when all the reference modules E, F, G, and H have been cleaned for the last time it is found that poly3 performs 2 % and 3 % better than poly1 and poly16 respectively, poly13 performs 1 % better than poly15 as well as poly5 and poly12 performs 1 % and 2 % better than poly10 respectively. Besides, poly5 and poly12 performs a 9 % and 11 % better than poly7. Furthermore, there is no change in performance between poly6 and poly9 as well as poly4 and poly15. However, the increase in performance of poly3 to poly1, poly13 to poly15 as well as poly5 and poly12 to poly10 is insignificant. In addition, it is found that TF22 perform 7% better than the reference un-cleaned module TF24 and similarly; TF21 performs 7% higher than TF23. Furthermore, modules with ARC glass (TF17, TF18, TF19, and TF20) shows that cleaning the modules with only distilled water (TF19) or dry-cleaned after cleaned with distilled water(TF20) decreases the performance of the modules by 5 % and 4 % comparing to its respective reference uncleanedmodules TF17 and TF18 respectively.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Solar radiation takes in today's world, an increasing importance. Different devices are used to carry out spectral and integrated measurements of solar radiation. Thus the sensors can be divided into the fallow types: Calorimetric, Thermomechanical, Thermoelectric and Photoelectric. The first three categories are based on components converting the radiation to temperature (or heat) and then into electrical quantity. On the other hand, the photoelectric sensors are based on semiconductor or optoelectronic elements that when irradiated change their impedance or generate a measurable electric signal. The response function of the sensor element depends not only on the intensity of the radiation but also on its wavelengths. The radiation sensors most widely used fit in the first categories, but thanks to the reduction in manufacturing costs and to the increased integration of electronic systems, the use of the photoelectric-type sensors became more interesting. In this work we present a study of the behavior of different optoelectronic sensor elements. It is intended to verify the static response of the elements to the incident radiation. We study the optoelectronic elements using mathematical models that best fit their response as a function of wavelength. As an input to the model, the solar radiation values are generated with a radiative transfer model. We present a modeling of the spectral response sensors of other types in order to compare the behavior of optoelectronic elements with other sensors currently in use.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Os espectrómetros instalados a bordo de satélites e à superfície da Terra têm desempenhado um papel fundamental na compreensão da química e dinâmica da atmosfera e na monitorização da poluição ambiental. O SPATRAM (SPectrometer for Atmosferic TRAcers Measurements) é um espectrómetro ultravioleta – Visível que compreende a região espectral entre 250-950nm e se encontra instalado no Instituto de Ciências da Terra (ICT) desde Abril de 2004. Enquanto isso, em 2012, um novo modelo do instrumento SPATRAM foi desenvolvido no ICT e foi chamado SPATRAM2. O objectivo do trabalho proposto é a calibração radiométrica do espectrómetro SPATRAM2, utilizando uma lâmpada de halogéneo e uma esfera de integração. A calibração radiométrica do sistema SPATRAM2 permitirá obter a radiação solar directa, com alta resolução espectral, o que actualmente não se encontra disponível. Este tipo de medição poderá ter um papel importante na investigação e desenvolvimento na área da energia solar e aplicações; Radiometric Calibration of Spectrophotometric Optical Instrumentation Abstract: Spectrometers installed aboard satellites and located on Earth’s surface have played a fundamental role to understand atmosphere’s chemistry and dynamic and to monitor environmental pollution. The SPATRAM (SPectrometer for Atmosferic TRAcers Measurements) instrument is an ultraviolet spectrometer – visible that covers spectral region between 250-950nm and it is installed in Instituto de Ciências da Terra (Institute of Earth Sciencies), ICT, since April 2004. Meanwhile, in 2012, a new model of SPATRAM instrument was developed in ICT and was called SPATRAM2. The goal of this project is the radiometric calibration of the SPATRAM2 spectrometer using a halogen lamp and an integrating sphere. Radiometric calibration of SPATRAM2 system will provide direct solar radiation, with high spectral resolution, that is not available nowadays. This type of measurement may play an important role in solar energy’s progress and investigation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper focuses on computational models development and its applications on demand response, within smart grid scope. A prosumer model is presented and the corresponding economic dispatch problem solution is analyzed. The prosumer solar radiation production and energy consumption are forecasted by artificial neural networks. The existing demand response models are studied and a computational tool based on fuzzy clustering algorithm is developed and the results discussed. Consumer energy management applications within the InovGrid pilot project are presented. Computation systems are developed for the acquisition, monitoring, control and supervision of consumption data provided by smart meters, allowing the incorporation of consumer actions on their electrical energy management. An energy management system with integration of smart meters for energy consumers in a smart grid is developed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Cork oak tree (Quercus suber L.), in Portugal, is considered the national tree and have special demands and legal protection when dealing with silviculture management (pruning, debarking, thinning). Being a species of slow growth, cork oak transplanting procedures can be a valuable asset either from the economic or ecological rationales to relocate trees, re-populate areas affected by high tree mortality, increase tree density to control erosion on montado ecosystems or landscape design. This study focuses the impacts and physiological responses of ten juvenile rain fed cork oak trees (with diameter at breast height between 6 and 16cm), when subjected to transplant operations. The work was conducted in a cork oak woodland experimental plot at the campus of the University of Évora (SW Portugal), during the year of 2015. Tree’s transplants were performed with a truck-mounted hydraulic spade transplanter coupled with a proposed methodology to maximize tree survival rates, addressing techniques to limit canopy transpiration and to improve root systems prior to transplant. Tree ecophysiological indicators (sap flow, leaf water potentials and stomatal conductance) were monitored comprising the periods before and after transplant operations, and water stress avoidance practices were established to promote post-transplant tree status recovery, including irrigation to match average daily accumulated sap flow. Transplant operations were considered successful when the tree's water uptake inferred from sap flow exhibited a high correlation with solar radiation and returned to its undisturbed or pre-transplant water potential gradients in the following 2 to 3 weeks. The post-transplant tree nourishment follow up included permanent sap flow measurements and identified the time elapsed after transplantation from which the tree recovers its normal transpiration thresholds and response. Our results suggest that by following the proposed methodology the sampled cork oak trees exhibited a transplant success rate of 90%.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Irradiation is the main component for producing the electricity from solar energy. When obstacles come in between the sun and the PV cell then it doesn’t get sufficient irradiance to produce enough electricity. Shadowing has a great impact on photovoltaic cell. The main fuel of PV cell is solar radiation. Using solar radiation, a photovoltaic cell produces electricity. The shadow on a PV cell decreases the output of the photovoltaic cell. It has been already shown in different papers that shadow effect decreases the output of the PV cell. There are different kinds of shadow effects which are observed, some minimize the PV cell output and some reduce the output to zero. There are different types of shadow based on their effects on the photovoltaic cell. The shadow has also effects depending on whether the PV cells are connected in series connection or in parallel connection. In series when one cell is out of order then the whole series of the PV cells will not work but in parallel connection if one cell is damaged, the others will work because they work independently. According to the output requirement the arrangement of the PV cells are made in series or parallel. Simulink modeling is made for series and parallel connection between two PV cells and the shadow effect is analyzed on one of the PV cells. Using SIMULINK, the shadowing is simulated on the two PV cells, where in one system they are in series and in another system they are in parallel. Slowly the irradiance is decreased to simulate the shadow effect. Simulation of the shadow effect gives an idea about the output of the PV cell system when system has shadow on the PV cells. Here the shadow effect on the two PV cells using series and parallel combinations are simulated and analyzed for understanding the effects on output.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The production of fine wines in the Sub-middle of the São Francisco River Valley, Northeast of Brazil, is relatively recent, about twenty-five years ago. This region presents different characteristics, with a tropical semiarid climate, in a flat landscape. Presenting high annual average temperature, solar radiation and water in abundance for irrigation, it?s possible the scaling the grape harvests for winemaking throughout the year, allowing to obtain until two harvests per year. Several factors may affect the aromatic compounds in wines, such as viticulture practices, climatic conditions, cultivars and winemaking process. This study aimed to evaluate the aromatic stability of Syrah and Petit Verdot tropical wines elaborated in two different periods in the year. The grapes were harvested in the first and second semesters of 2009, in June and November. The wines were elaborated and then, they were bottled and analyzed in triplicate, thirty days and one year after bottling, by gas chromatography with ionization detector flame (GC-FID), to evaluate the profile and the stability of the aroma compounds. Principal component analysis was applied to discriminate between wine samples and to find the compounds responsible by the variability. The results showed that Syrah and Petit Verdot tropical wines presented different responses, for stability of higher alcohols, esters and carboxylic acids.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In the Northeast of Brazil, vines can produce twice a year, because annual average temperature is 26ºC, with high solar radiation and water availability for irrigation. Many cultivars have been tested according to their adaptation to the climate and soil, and the main variety used for red wines is Syrah. This work aimed to evaluate five clones of Syrah, grafted on two rootstocks, in two harvests of the second semester of 2009 and 2010, according to the chemical analyses of the wines.The clones evaluated were 100, 174, 300, 470 and 525, the rootstocks were Paulsen 1103 and IAC 313 (Golia x Vitis caribeae). Grapes were harvested in November 2009 and 2010 and the yield was evaluated. Climate characteristics of each harvest was determined and correlated to the results. Wines were elaborated in glass tanks of 20 L, with alcoholic fermentation at 25ºC for seven days, then wines were pressed and malolactic fermentation was carried out at 18ºC for 20 days. The following parameters were analyzed: alcohol content, dry extract, total anthocyanins, total phenolic index. High performance liquid chromatography was used to determine tartaric, malic, lactic and citric organic acids. Results showed that wines presented different concentrations of classical analyses, phenolics and organic acids according to the harvest date, rootstocks and clones. Principal component analysis was applied on data and clusters with wine samples were formed, explaining the variability, and results are discussed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The wine production is an important activity in many Ibero-American countries. The wine producer regions of these countries configure a large use of different climate types and viticultural climates. In a vitivinicultural zoning project of CYTED (Ibero-American Program for Science, Technology and Development), a viticultural climatic characterization was done in this macro viticultural region. The project have assembled a climatic database that characterizes the viticultural regions, including relevant variables for viticulture: air temperature (mean, maximum, and minimum), precipitation, relative humidity, solar radiation, number of sunshine hours, wind speed, and evapotranspiration. Using indices of the Geoviticulture MCC System (HI, CI and DI), more than 70 viticultural regions in different countries (Argentina, Bolivia, Brazil, Chile, Cuba, Spain, Mexico, Peru, Portugal and Uruguay) were characterized according to its viticultural climatic. The results, which will be integrated to the worldwide database of the MCC System, showed that the Ibero-American viticulture is placed in a wide range of climatic groups of the wine producing regions around the world. This article presents the climatic groups found in Ibero-America, identifying also some new climatic groups not yet found in other regions of the world. This work also identifies some climatic groups not found in Ibero-America viticulture. The research has also highlighted viticultural areas characterized by climates with ?intra-annual climatic variability?, with the potential to produce more than one growing cycle per year. The results allow to conclude that the wide variability and climatic diversity present in Ibero-America may be one of the reasons to explain the diversity in terms of wine types, sensorial characteristics, typicity and uniqueness of wines produced on this macro-region.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Under land and climate change scenarios, agriculture has experienced water competitions among other sectors in the São Paulo state, Brazil. On the one hand, in several occasions, in the northeastern side of this state, nowadays sugar-cane is expanding, while coffee plantations are losing space. On the other hand, both crops have replaced the natural vegetation composed by Savannah and Atlantic Coastal Forest species. Under this dynamic situation, geosciences are valuable tools for evaluating the large-scale energy and mass exchanges between these diffe rent agro-ecosystems and the lower atmosphere. For quantification of the energy balance components in these mixed agro-ecosystems, the bands 1 and 2 from the MODIS product MOD13Q1 we re used throughout SA FER (Surface Algorithm for Evapotranspiration Retrieving) algorithm, which was applied together with a net of 12 automatic weather stations, during the year 2015 in the main sugar cane and coffee growing regions, located at the no rtheastern side of the state. The fraction of the global solar radiation (R G ) transformed into net radiation (Rn) was 52% for sugar cane and 53% for both, coffee and natural vegetation. The respective annual fractions of Rn used as λ E were 0.68, 0.87 and 0.77, while for the sensible heat (H) fluxes they were 0.27, 0.07 and 0.16. From April to July, heat advection raised λ E values above Rn promoting negative H, however these effects were much and less strong in coffee and sugar cane crop s, respectively. The smallest daily Rn fraction for all agro-ecosystems was for the soil heat flux (G), with averages of 5%, 6% and 7% in sugar cane, coffee and natural vegetation. From the energy balance analyses, we could conclude that, sugar-cane crop presented lower annual water consumption than that for coffee crop , what can be seen as an advantage in situations of water scarcity. However, the replacement of natural vegetation by su gar cane can contribute for warming th e environment, while when this occur with coffee crop there was noticed co oling conditions. The large scale modeling satisfactory results confirm the suitability of using MODIS products togeth er with weather stations to study the energy balance components in mixed agro-ecosystems under land-use and climate change conditions.