978 resultados para Soil structure interaction


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Motiviert durch die Lebenswissenschaften (Life sciences) haben sich Untersuchungen zur Dynamik von Makromolekülen in Lösungen in den vergangenen Jahren zu einem zukunftsweisenden Forschungsgebiet etabliert, dessen Anwendungen von der Biophysik über die physikalische Chemie bis hin zu den Materialwissenschaften reichen. Neben zahlreichen experimentellen Forschungsprogrammen zur räumlichen Struktur und den Transporteigenschaften grosser MolekÄule, wie sie heute praktisch an allen (Synchrotron-) Strahlungsquellen und den Laboren der Biophysik anzutreffen sind, werden gegenwärtig daher auch umfangreiche theoretische Anstrengungen unternommen, um das Diffusionsverhalten von Makromolekülen besser zu erklären. Um neue Wege für eine quantitative Vorhersagen des Translations- und Rotationsverhaltens grosser Moleküle zu erkunden, wurde in dieser Arbeit ein semiphänomenologischer Ansatz verfolgt. Dieser Ansatz erlaubte es, ausgehend von der Hamiltonschen Mechanik des Gesamtsystems 'Molekül + Lösung', eine Mastergleichung für die Phasenraumdichte der Makromoleküle herzuleiten, die den Einfluss der Lösung mittels effektiver Reibungstensoren erfasst. Im Rahmen dieses Ansatzes gelingt es z.B. (i) sowohl den Einfluss der Wechselwirkung zwischen den makromolekularen Gruppen (den sogenannten molekularen beads) und den Lösungsteilchen zu analysieren als auch (ii) die Diffusionseigen schaften für veschiedene thermodynamische Umgebungen zu untersuchen. Ferner gelang es auf der Basis dieser Näherung, die Rotationsbewegung von grossen Molekülen zu beschreiben, die einseitig auf einer Oberfläche festgeheftet sind. Im Vergleich zu den aufwendigen molekulardynamischen (MD) Simulationen grosser Moleküle zeichnet sich die hier dargestellte Methode vor allem durch ihren hohen `Effizienzgewinn' aus, der für komplexe Systeme leicht mehr als fünf Grössenordnungen betragen kann. Dieser Gewinn an Rechenzeit erlaubt bspw. Anwendungen, wie sie mit MD Simulationen wohl auch zukünftig nicht oder nur sehr zögerlich aufgegriffen werden können. Denkbare Anwendungsgebiete dieser Näherung betreffen dabei nicht nur dichte Lösungen, in denen auch die Wechselwirkungen der molekularen beads zu benachbarten Makromolekülen eine Rolle spielt, sondern auch Untersuchungen zu ionischen Flüssigkeiten oder zur Topologie grosser Moleküle.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The increased use of cereal/legume crop rotation has been advocated as a strategy to increase cereal yields of subsistence farmers in West Africa, and is believed to promote changes in the rhizosphere that enhance early plant growth. In this study we investigated the microbial diversity of the rhizoplane from seedlings grown in two soils previously planted to cereal or legume from experimental plots in Gaya, Niger, and Kaboli, Togo. Soils from these legume rotation and continuous cereal plots were placed into containers and sown in a growth chamber with maize (Zea mays L.), millet (Pennisetum glaucum L.), sorghum (Sorghum bicolor L. Moench.), cowpea (Vigna unguiculata L.) or groundnut (Arachis hypogaea L.). At 7 and 14 days after sowing, 16S rDNA profiles of the eubacterial and ammoniaoxidizing communities from the rhizoplane and bulk soil were generated using denaturing gradient gel electrophoresis (DGGE). Community profiles were subjected to peak fitting analyses to quantify the DNA band position and intensities, after which these data were compared using correspondence and principal components analysis. The data showed that cropping system had a highly significant effect on community structure (p <0.005), irrespective of plant species or sampling time. Continuous cereal-soil grown plants had highly similar rhizoplane communities across crop species and sites, whereas communities from the rotation soil showed greater variability and clustered with respect to plant species. Analyses of the ammonia-oxidizing communities provided no evidence of any effects of plant species or management history on ammonia oxidizers in soil from Kaboli, but there were large shifts with respect to this group of bacteria in soils from Gaya. The results of these analyses show that crop rotation can cause significant shifts in rhizosphere bacterial communities.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Soil organic matter (SOM) vitally impacts all soil functions and plays a key role in the global carbon (C) cycle. More than 70% of the terrestric C stocks that participate in the active C cycle are stored in the soil. Therefore, quantitative knowledge of the rates of C incorporation into SOM fractions of different residence time is crucial to understand and predict the sequestration and stabilization of soil organic carbon (SOC). Consequently, there is a need of fractionation procedures that are capable of isolating functionally SOM fractions, i.e. fractions that are defined by their stability. The literature generally refers to three main mechanisms of SOM stabilization: protection of SOM from decomposition by (i) its structural composition, i.e. recalcitrance, (ii) spatial inaccessibility and/or (iii) interaction with soil minerals and metal ions. One of the difficulties in developing fractionation procedures for the isolation of functional SOM fractions is the marked heterogeneity of the soil environment with its various stabilization mechanisms – often several mechanisms operating simultaneously – in soils and soil horizons of different texture and mineralogy. The overall objective of the present thesis was to evaluate present fractionation techniques and to get a better understanding of the factors of SOM sequestration and stabilization. The first part of this study is attended to the structural composition of SOM. Using 13C cross-polarization magic-angle spinning (CPMAS) nuclear magnetic resonance (NMR) spectroscopy, (i) the effect of land use on SOM composition was investigated and (ii) examined whether SOM composition contributes to the different stability of SOM in density and aggregate fractions. The second part of the present work deals with the mineral-associated SOM fraction. The aim was (iii) to evaluate the suitability of chemical fractionation procedures used in the literature for the isolation of stable SOM pools (stepwise hydrolysis, treatments using oxidizing agents like Na2S2O8, H2O2, and NaOCl as well as demineralization of the residue obtained by the NaOCl treatment using HF (NaOCl+HF)) by pool sizes, 13C and 14C data. Further, (iv) the isolated SOM fractions were compared to the inert organic matter (IOM) pool obtained for the investigated soils using the Rothamsted Carbon Model and isotope data in order to see whether the tested chemical fractionation methods produce SOM fractions capable to represent this pool. Besides chemical fractionation, (v) the suitability of thermal oxidation at different temperatures for obtaining stable SOC pools was evaluated. Finally, (vi) the short-term aggregate dynamics and the factors that impact macroaggregate formation and C stabilization were investigated by means of an incubation study using treatments with and without application of 15N labeled maize straw of different degradability (leaves and coarse roots). All treatments were conducted with and without the addition of fungicide. Two study sites with different soil properties and land managements were chosen for these investigations. The first one, located at Rotthalmünster, is a Stagnic Luvisol (silty loam) under different land use regimes. The Ah horizons of a spruce forest and continuous grassland and the Ap and E horizons of two plots with arable crops (continuous maize and wheat cropping) were examined. The soil of the second study site, located at Halle, is a Haplic Phaeozem (loamy sand) where the Ap horizons of two plots with arable crops (continuous maize and rye cropping) were investigated. Both study sites had a C3-/C4-vegetational change on the maize plot for the purpose of tracing the incorporation of the younger, maize-derived C into different SOM fractions and the calculation of apparent C turnover times of these. The Halle site is located near a train station and industrial areas, which caused a contamination with high amounts of fossil C. The investigation of aggregate and density fractions by 13C CPMAS NMR spectroscopy revealed that density fractionation isolated SOM fractions of different composition. The consumption of a considerable part (10–20%) of the easily available O-alkyl-C and the selective preservation of the more recalcitrant alkyl-C when passing from litter to the different particulate organic matter (POM) fractions suggest that density fractionation was able to isolate SOM fractions with different degrees of decomposition. The spectra of the aggregate fractions resembled those of the mineral-associated SOM fraction obtained by density fractionation and no considerable differences were observed between aggregate size classes. Comparison of plant litter, density and aggregate size fractions from soil under different land use showed that the type of land use markedly influenced the composition of SOM. While SOM of the acid forest soil was characterized by a large content (> 50%) of POM, which contained high amounts of spruce-litter derived alkyl-C, the organic matter in the biologically more active grassland and arable soils was dominated by mineral-associated SOM (> 95%). This SOM fraction comprised greater proportions of aryl- and carbonyl-C and is considered to contain a higher amount of microbially-derived organic substances. Land use can alter both, structure and stability of SOM fractions. All applied chemical treatments induced considerable SOC losses (> 70–95% of mineral-associated SOM) in the investigated soils. The proportion of residual C after chemical fractionation was largest in the arable Ap and E horizons and increased with decreasing C content in the initial SOC after stepwise hydrolysis as well as after the oxidative treatments with H2O2 and Na2S2O8. This can be expected for a functional stable pool of SOM, because it is assumed that the more easily available part of SOC is consumed first if C inputs decrease. All chemical treatments led to a preferential loss of the younger, maize-derived SOC, but this was most pronounced after the treatments with Na2S2O8 and H2O2. After all chemical fractionations, the mean 14C ages of SOC were higher than in the mineral-associated SOM fraction for both study sites and increased in the order: NaOCl < NaOCl+HF ≤ stepwise hydrolysis << H2O2 ≈ Na2S2O8. The results suggest that all treatments were capable of isolating a more stable SOM fraction, but the treatments with H2O2 and Na2S2O8 were the most efficient ones. However, none of the chemical fractionation methods was able to fit the IOM pool calculated using the Rothamsted Carbon Model and isotope data. In the evaluation of thermal oxidation for obtaining stable C fractions, SOC losses increased with temperature from 24–48% (200°C) to 100% (500°C). In the Halle maize Ap horizon, losses of the young, maize-derived C were considerably higher than losses of the older C3-derived C, leading to an increase in the apparent C turnover time from 220 years in mineral-associated SOC to 1158 years after thermal oxidation at 300°C. Most likely, the preferential loss of maize-derived C in the Halle soil was caused by the presence of the high amounts of fossil C mentioned above, which make up a relatively large thermally stable C3-C pool in this soil. This agrees with lower overall SOC losses for the Halle Ap horizon compared to the Rotthalmünster Ap horizon. In the Rotthalmünster soil only slightly more maize-derived than C3-derived SOC was removed by thermal oxidation. Apparent C turnover times increased slightly from 58 years in mineral-associated SOC to 77 years after thermal oxidation at 300°C in the Rotthalmünster Ap and from 151 to 247 years in the Rotthalmünster E horizon. This led to the conclusion that thermal oxidation of SOM was not capable of isolating SOM fractions of considerably higher stability. The incubation experiment showed that macroaggregates develop rapidly after the addition of easily available plant residues. Within the first four weeks of incubation, the maximum aggregation was reached in all treatments without addition of fungicide. The formation of water-stable macroaggregates was related to the size of the microbial biomass pool and its activity. Furthermore, fungi were found to be crucial for the development of soil macroaggregates as the formation of water-stable macroaggregates was significantly delayed in the fungicide treated soils. The C concentration in the obtained aggregate fractions decreased with decreasing aggregate size class, which is in line with the aggregate hierarchy postulated by several authors for soils with SOM as the major binding agent. Macroaggregation involved incorporation of large amounts maize-derived organic matter, but macroaggregates did not play the most important role in the stabilization of maize-derived SOM, because of their relatively low amount (less than 10% of the soil mass). Furthermore, the maize-derived organic matter was quickly incorporated into all aggregate size classes. The microaggregate fraction stored the largest quantities of maize-derived C and N – up to 70% of the residual maize-C and -N were stored in this fraction.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The interatomic potential of the system I - I at intermediate and small distances is calculated from atomic DFS electron densities within a statistical model. Structures in the potential, due to the electronic shells, are investigated. Calculations of the elastic differential scattering cross section for small angles and several keV impact energies show a detailed peak pattern which can be correlated to individual electronic shell interaction.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study was conducted to investigate soil biological and chemical factors that give rise to cereal yield enhancing effects of legume rotations on sandy, nutrient poor West African soils. The aim was not only to gain more information on the role of legume residues and microorganisms in the soil nutrient cycle. But the study aimed at evaluating if differences in substrate qualities (e.g. root residues) cause changes in the microbial community structure due to specific and highly complex microbe-root-soil interactions. Site and system specific reactions of microorganisms towards rewetting, simulating the onset of rainy season, were observed. Higher respiration rates, higher amounts of microbial biomass carbon (Cmic) and nitrogen (Nmic) as well as higher ergosterol, muramic acid, glucosamine and adenylate concentrations were measured in CL soils of Koukombo and in both soils from Fada. The immediate increase in ATP concentrations after rewetting was likely caused by rehydration of microbial cells where N was not immobilized and, thus, available for plants facilitating their rapid development. Legume root residues led only to slightly better plant performances compared to the control, while the application of cereal roots reduced seedling growth. In contrast to sorghum seedlings, the microbial community did not react to the mineral treatment. Thus the energy supply in form of organic amendments increased microbial indices compared to mineral P application and the control. The results of basal respiration rates, Cmic and Corg levels indicate that the microbial community in the soil from Koukombo is less efficient in substrate use compared to microorganisms in the soil from Fada. However, the continuous carbon input by legume root residues might have contributed to these differences in soil fertility. With the 33P isotopic exchange method a low buffering capacity was detected in both soils irrespective of treatments. Calculated E values (E1min to E1min-1d and E1d-3m) indicated a slowly release of P due to root turnover while applied mineral P is taken up by plants or fixed to the soil. Due to the fact that sorghum growth reacted mainly to the application of mineral P and the microorganisms solely to the organic inputs, the combination of both amendments seems to be the best approach to a sustainable increase of crop production on many nutrient-poor, sandy West African soils. In a pot experiment, were CC and CL soils from Fada and Koukombo were adjusted to the same level of P and N concentrations, crop growth was significantly higher on CL soils, compared to the respective treatments on CC soils. Mycorrhizal infection of roots was increased and the number of nematodes, predominantly free living nematodes, was almost halfed on rotation soils. In conclusion, increased nutrient availability (especially P and N) through the introduction of legumes is not the only reason for the observed yield increasing effects. Soil biological factors seem to also play an important role. In a root chamber experiment the pH gradient along the root-soil-interface was measured at three times using an antimony microelectrode. For Fada soils, pH values were higher on CL than CC soils while the opposite was true for the Koukombo soils. Site-specific differences between Fada and Koukombo soils in N content and microbial community structures might have created varying crop performances leading to the contrasting pH findings. However, the mechanisms involved in this highly complex microbe-root-soil interaction remain unclear.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis presents the development of hardware, theory, and experimental methods to enable a robotic manipulator arm to interact with soils and estimate soil properties from interaction forces. Unlike the majority of robotic systems interacting with soil, our objective is parameter estimation, not excavation. To this end, we design our manipulator with a flat plate for easy modeling of interactions. By using a flat plate, we take advantage of the wealth of research on the similar problem of earth pressure on retaining walls. There are a number of existing earth pressure models. These models typically provide estimates of force which are in uncertain relation to the true force. A recent technique, known as numerical limit analysis, provides upper and lower bounds on the true force. Predictions from the numerical limit analysis technique are shown to be in good agreement with other accepted models. Experimental methods for plate insertion, soil-tool interface friction estimation, and control of applied forces on the soil are presented. In addition, a novel graphical technique for inverting the soil models is developed, which is an improvement over standard nonlinear optimization. This graphical technique utilizes the uncertainties associated with each set of force measurements to obtain all possible parameters which could have produced the measured forces. The system is tested on three cohesionless soils, two in a loose state and one in a loose and dense state. The results are compared with friction angles obtained from direct shear tests. The results highlight a number of key points. Common assumptions are made in soil modeling. Most notably, the Mohr-Coulomb failure law and perfectly plastic behavior. In the direct shear tests, a marked dependence of friction angle on the normal stress at low stresses is found. This has ramifications for any study of friction done at low stresses. In addition, gradual failures are often observed for vertical tools and tools inclined away from the direction of motion. After accounting for the change in friction angle at low stresses, the results show good agreement with the direct shear values.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Selected configuration interaction (SCI) for atomic and molecular electronic structure calculations is reformulated in a general framework encompassing all CI methods. The linked cluster expansion is used as an intermediate device to approximate CI coefficients BK of disconnected configurations (those that can be expressed as products of combinations of singly and doubly excited ones) in terms of CI coefficients of lower-excited configurations where each K is a linear combination of configuration-state-functions (CSFs) over all degenerate elements of K. Disconnected configurations up to sextuply excited ones are selected by Brown's energy formula, ΔEK=(E-HKK)BK2/(1-BK2), with BK determined from coefficients of singly and doubly excited configurations. The truncation energy error from disconnected configurations, Δdis, is approximated by the sum of ΔEKS of all discarded Ks. The remaining (connected) configurations are selected by thresholds based on natural orbital concepts. Given a model CI space M, a usual upper bound ES is computed by CI in a selected space S, and EM=E S+ΔEdis+δE, where δE is a residual error which can be calculated by well-defined sensitivity analyses. An SCI calculation on Ne ground state featuring 1077 orbitals is presented. Convergence to within near spectroscopic accuracy (0.5 cm-1) is achieved in a model space M of 1.4× 109 CSFs (1.1 × 1012 determinants) containing up to quadruply excited CSFs. Accurate energy contributions of quintuples and sextuples in a model space of 6.5 × 1012 CSFs are obtained. The impact of SCI on various orbital methods is discussed. Since ΔEdis can readily be calculated for very large basis sets without the need of a CI calculation, it can be used to estimate the orbital basis incompleteness error. A method for precise and efficient evaluation of ES is taken up in a companion paper

Relevância:

30.00% 30.00%

Publicador:

Resumo:

El treball de tesi s'emmarca dins del camp de la bioinorgànica, disciplina que estudia les propietats estructurals i de reactivitat dels centres actius dels enzims, servint-se de models síntètics de baix pes molecular per tal d'intentar reproduïr la reactivitat presentada per l'enzim i conèixer els mecanismes de reacció a nivell molecular que tenen lloc en els processos biològics.1 Més concretament el treball posa especial èmfasi en els processos d'activació d'oxigen molecular que tenen lloc en les metaloproteïnes de Coure del Tipus 3, com són l'hemocianina i la tirosinasa, ambdues presentant un complex dinuclear de Cu(I)) en el centre actiu de la forma reduïda, capaç d'activar l'O2 cap a espècies de tipus peròxid.2 Un altre camp d'interès ha estat l'estudi dels processos d'activació d'enllaços C-H no activats en hidrocarburs, tant per la seva importàcia a nivell industrial com per comprendre els mecanismes intrínsecs d'aquesta activació a través de metalls de trancisió.3,4 Durant el treball de tesi presentat s'ha desenvolupat la síntesi de nous complexes de Coure(I), Coure(II) y Cu(III) utilitzant lligands macrocíclics de tipus triaza i hexaaza, i s'han estudiat la seves propietats estructurals així com la seva reactivitat. La reacció dels lligands triazacíclics H32m, H2Me33m i H33m amb sals de coure(II) dóna lloc a una reacció de desproporció de Cu(II) per obtenir-se en quantitats equimolars un complex organometàl·lic de Cu(III) i un complex de Cu(I). La caracterizació estructural exhaustiva dels complexes del tipus aryl-Cu(III) evidencia la formació d'un enllaç organometàl·lic entre l'àtom de Cu(III) i el carboni més próxim de l'anell aromàtic del lligand. Aquesta reacció, a més de representar una nova forma de desproporció en la química del Cu, suposa l'activació d'un enllaç C-H aromàtic a temperatura ambient que, mitjançant l'estudi cinètic d'aquesta desproporció per espectroscòpia UV-Vis, dels càlcul de l'efecte cinètic isotòpic utilitzant el lligand deuterat en el C-H de l'anell, juntament amb el recolzament teòrics dels càlculs DFT per a la optimització de geometries d'intermedis de reacció, ens permeten proposar un mecanisme de reacció pel nostre sistema, on l'activació de l'enllaç C-H aromàtic transcorre per la formació d'un enllaç de tipus agòstic C-H ? Cu(II),5 seguit de la desprotonació del C-H aromàtic per acció d'una base i posterior transferència electrònica per obtenir el complex organometàlic de Cu(III) i el complex de de Cu(I). En quant a la reactivitat d'aquests complexes organometàl·lics aryl-Cu(III) s'ha observat que una base en medi aquós causa la inestabilitat d'aquests compostos, evolucionant cap a la inserció d'un àtom d'oxigen sobre la posició activada de l'anell aromàtic, per a donar lloc a un complex dinuclear de Cu(II) amb dos grups fenoxo actuant de pont entre els àtoms metàl·lics. La reacció transcorre per un intermedi colorejat, caracteritzat com el complex ayl-Cu(III) monodesprotonat en una de les seves amines benzíliques, els quals s'observen igualment en la reacció dels correponents complexos de Cu(I) amb oxigen molecular (O2). És en els nostres sistemes en els quals es descriu per primera vegada la participació d'intermedis organometàl·lics Cu(III)-C en processos d'hidroxilació aromàtica, tals com el desenvolupat per l'enzim tirosinasa o per alguns dels seus models químics de síntesi.6,7,8 S'han estudiat les propietats magnètiques dels quatre bis(fenoxo)complexes de Cu(II) descrits, obtenint-se uns acoplaments de tipus antiferromagnètic o ferromagnètic de diversa magnitud, depenent del solapament orbitalari a l'enllaç Cu-O, a través del qual es produeix el superintercanvi. Nous complexos de Cu(I) sintetitzats amb lligands hexaazamacrocíclics han estat estudiats, i posant especial èmfasi a la seva reactivitat respecta a l'activació d'oxigen molecular (O2). S'ha observat una reactivitat diferenciada segons la concentració de complex de Cu(I) utilitzada, de manera que a altes concentracions s'obté un carbonato complex tetranuclear de Cu(II) per fixació de CO2 atmosfèric, mentre que a baixes concentracions s'observa la hidroxilació aromàtica intramolecular d'un dels anells benzílics del lligand, reacció que presumiblement transcorre per atac electrofílic d'un peroxo complex intermedi sobre el sistema ? de l'anell.6 Els resultats obtinguts en aquest treball ens mostren la facilitat per activar enllaços C-H aromàtics per metalls de transició de la primera sèrie (Cu, Ni) quan aquests estan suficientment pròxims a l'enllaç C-H, en unes condicions de reacció molt suaus (1atm., temperatura ambient). Els nous complexos organometàl·lics Aryl-Cu(III) són el producte d'una nova reacció de desproporció de Cu(II), així com un posició aromàtica activada que podria ser el punt de partida per l'estudi de funcionalització selectiva d'aquests grups aromàtics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Point defects in metal oxides such as TiO2 are key to their applications in numerous technologies. The investigation of thermally induced nonstoichiometry in TiO2 is complicated by the difficulties in preparing and determining a desired degree of nonstoichiometry. We study controlled self-doping of TiO2 by adsorption of 1/8 and 1/16 monolayer Ti at the (110) surface using a combination of experimental and computational approaches to unravel the details of the adsorption process and the oxidation state of Ti. Upon adsorption of Ti, x-ray and ultraviolet photoemission spectroscopy (XPS and UPS) show formation of reduced Ti. Comparison of pure density functional theory (DFT) with experiment shows that pure DFT provides an inconsistent description of the electronic structure. To surmount this difficulty, we apply DFT corrected for on-site Coulomb interaction (DFT+U) to describe reduced Ti ions. The optimal value of U is 3 eV, determined from comparison of the computed Ti 3d electronic density of states with the UPS data. DFT+U and UPS show the appearance of a Ti 3d adsorbate-induced state at 1.3 eV above the valence band and 1.0 eV below the conduction band. The computations show that the adsorbed Ti atom is oxidized to Ti2+ and a fivefold coordinated surface Ti atom is reduced to Ti3+, while the remaining electron is distributed among other surface Ti atoms. The UPS data are best fitted with reduced Ti2+ and Ti3+ ions. These results demonstrate that the complexity of doped metal oxides is best understood with a combination of experiment and appropriate computations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper examines to what extent crops and their environment should be viewed as a coupled system. Crop impact assessments currently use climate model output offline to drive process-based crop models. However, in regions where local climate is sensitive to land surface conditions more consistent assessments may be produced with the crop model embedded within the land surface scheme of the climate model. Using a recently developed coupled crop–climate model, the sensitivity of local climate, in particular climate variability, to climatically forced variations in crop growth throughout the tropics is examined by comparing climates simulated with dynamic and prescribed seasonal growth of croplands. Interannual variations in land surface properties associated with variations in crop growth and development were found to have significant impacts on near-surface fluxes and climate; for example, growing season temperature variability was increased by up to 40% by the inclusion of dynamic crops. The impact was greatest in dry years where the response of crop growth to soil moisture deficits enhanced the associated warming via a reduction in evaporation. Parts of the Sahel, India, Brazil, and southern Africa were identified where local climate variability is sensitive to variations in crop growth, and where crop yield is sensitive to variations in surface temperature. Therefore, offline seasonal forecasting methodologies in these regions may underestimate crop yield variability. The inclusion of dynamic crops also altered the mean climate of the humid tropics, highlighting the importance of including dynamical vegetation within climate models.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents the model SCOPE (Soil Canopy Observation, Photochemistry and Energy fluxes), which is a vertical (1-D) integrated radiative transfer and energy balance model. The model links visible to thermal infrared radiance spectra (0.4 to 50 μm) as observed above the canopy to the fluxes of water, heat and carbon dioxide, as a function of vegetation structure, and the vertical profiles of temperature. Output of the model is the spectrum of outgoing radiation in the viewing direction and the turbulent heat fluxes, photosynthesis and chlorophyll fluorescence. A special routine is dedicated to the calculation of photosynthesis rate and chlorophyll fluorescence at the leaf level as a function of net radiation and leaf temperature. The fluorescence contributions from individual leaves are integrated over the canopy layer to calculate top-of-canopy fluorescence. The calculation of radiative transfer and the energy balance is fully integrated, allowing for feedback between leaf temperatures, leaf chlorophyll fluorescence and radiative fluxes. Leaf temperatures are calculated on the basis of energy balance closure. Model simulations were evaluated against observations reported in the literature and against data collected during field campaigns. These evaluations showed that SCOPE is able to reproduce realistic radiance spectra, directional radiance and energy balance fluxes. The model may be applied for the design of algorithms for the retrieval of evapotranspiration from optical and thermal earth observation data, for validation of existing methods to monitor vegetation functioning, to help interpret canopy fluorescence measurements, and to study the relationships between synoptic observations with diurnally integrated quantities. The model has been implemented in Matlab and has a modular design, thus allowing for great flexibility and scalability.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The soil microflora is very heterogeneous in its spatial distribution. The origins of this heterogeneity and its significance for soil function are not well understood. A problem for understanding spatial variation better is the assumption of statistical stationarity that is made in most of the statistical methods used to assess it. These assumptions are made explicit in geostatistical methods that have been increasingly used by soil biologists in recent years. Geostatistical methods are powerful, particularly for local prediction, but they require the assumption that the variability of a property of interest is spatially uniform, which is not always plausible given what is known about the complexity of the soil microflora and the soil environment. We have used the wavelet transform, a relatively new innovation in mathematical analysis, to investigate the spatial variation of abundance of Azotobacter in the soil of a typical agricultural landscape. The wavelet transform entails no assumptions of stationarity and is well suited to the analysis of variables that show intermittent or transient features at different spatial scales. In this study, we computed cross-variograms of Azotobacter abundance with the pH, water content and loss on ignition of the soil. These revealed scale-dependent covariation in all cases. The wavelet transform also showed that the correlation of Azotobacter abundance with all three soil properties depended on spatial scale, the correlation generally increased with spatial scale and was only significantly different from zero at some scales. However, the wavelet analysis also allowed us to show how the correlation changed across the landscape. For example, at one scale Azotobacter abundance was strongly correlated with pH in part of the transect, and not with soil water content, but this was reversed elsewhere on the transect. The results show how scale-dependent variation of potentially limiting environmental factors can induce a complex spatial pattern of abundance in a soil organism. The geostatistical methods that we used here make assumptions that are not consistent with the spatial changes in the covariation of these properties that our wavelet analysis has shown. This suggests that the wavelet transform is a powerful tool for future investigation of the spatial structure and function of soil biota. (c) 2006 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Representative Soil Sampling Scheme (RSSS) has monitored the soil of agricultural land in England and Wales since 1969. Here we describe the first spatial analysis of the data from these surveys using geostatistics. Four years of data (1971, 1981, 1991 and 2001) were chosen to examine the nutrient (available K, Mg and P) and pH status of the soil. At each farm, four fields were sampled; however, for the earlier years, coordinates were available for the farm only and not for each field. The averaged data for each farm were used for spatial analysis and the variograms showed spatial structure even with the smaller sample size. These variograms provide a reasonable summary of the larger scale of variation identified from the data of the more intensively sampled National Soil Inventory. Maps of kriged predictions of K generally show larger values in the central and southeastern areas (above 200 mg L-1) and an increase in values in the west over time, whereas Mg is fairly stable over time. The kriged predictions of P show a decline over time, particularly in the east, and those of pH show an increase in the east over time. Disjunctive kriging was used to examine temporal changes in available P using probabilities less than given thresholds of this element. The RSSS was not designed for spatial analysis, but the results show that the data from these surveys are suitable for this purpose. The results of the spatial analysis, together with those of the statistical analyses, provide a comprehensive view of the RSSS database as a basis for monitoring the soil. These data should be taken into account when future national soil monitoring schemes are designed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The technology for site-specific applications of nitrogen (N) fertilizer has exposed a gap in our knowledge about the spatial variation of soil mineral N, and that which will become available during the growing season within arable fields. Spring mineral N and potentially available N were measured in an arable field together with gravimetric water content, loss on ignition, crop yield, percentages of sand, silt, and clay, and elevation to describe their spatial variation geostatistically. The areas with a larger clay content had larger values of mineral N, potentially available N, loss on ignition and gravimetric water content, and the converse was true for the areas with more sandy soil. The results suggest that the spatial relations between mineral N and loss on ignition, gravimetric water content, soil texture, elevation and crop yield, and between potentially available N and loss on ignition and silt content could be used to indicate their spatial patterns. Variable-rate nitrogen fertilizer application would be feasible in this field because of the spatial structure and the magnitude of variation of mineral N and potentially available N.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An expert elicitation exercise was undertaken to determine those components and processes that are most important for modeling plant uptake of organic chemicals. The state of our knowledge of these processes was also assessed. This semi-quantitative analysis allowed the construction of an idealized model with seven compartments; soil bulk, soil water, roots, stem, leaves, fruit, and air. Three main areas were identified further research: 1) the uptake of organic chemicals by fruit; 2) the internal transfer of organic chemicals between plant structures (e.g., stem and leaves); and 3) the transfer via the soil-air-plant pathway. Until new data becomes available to quantify these processes, it is proposed that an equilibrium partitioning approach is used between plant components other than fruit or that models consist of both an edible and inedible compartment.