921 resultados para Soil electrical conductivity
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The objective of this study was to evaluate the effect of mechanical damage and physiological events in harvesting and processing of soybean cv. Mosoy RR 8000. The samples were taken during harvest manual, mechanical harvesting and during processing (receipt, pre-cleaning, cleaning, spiral separator, classification and gravity table). The physiological and physical quality was analized through the purity, germination, vigor (first germination count, seedling dry matter, accelerated aging, electrical conductivity, tetrazolium, mechanical damages and seedling field emergence) tests. The statistical design used was a entirely randomized with nine treatments (9 sampling points) with 4 replications, being the means compared by the Tuckey test at 5% probability. In the purity and seedling field emergence were observed highly significative difference between the sampling process, also this differences were obtained the first germination count, seedling dry weight matter, accelerated aging and electrical conductivity which showed smaller results for the mechanical harvesting when compared with the manual harvesting. The germination was obtained differences at 5% for the manual harvesting in relation to the mechanical harvesting were obtained smaller results, being the main cause of reducing the soybean seed quality, when compared with the manual harvesting.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
PANI-LiNi0.8Co0.2O2 nanocomposite material with improved properties as positive electrode was prepared by a new synthesis method. In a first step, LiNi0.8Co0.2O2 mixed oxide in the form of a fine powder was dispersed in aniline and this suspension was sprayed on the surface of an aqueous solution of HCl and ammonium peroxodisulfate. The resulting PANI-LiNi0.8Co0.2O2 nanocomposite is spontaneously formed by polymerization of the aniline molecules present in the drops together with small particles of the oxide. This method induces the formation of nanocomposites showing a better distribution of the oxide particles in the polymer matrix than that observed in related PANI-LiNi0.8Co0.2O2 microcomposites prepared under ultrasound irradiation to disperse the oxide particles during PANI polymerization. Measurements of electrical conductivity and zeta potential, as well as structural characterization of PANI-LiNi0.8Co0.2O2 nanocomposites, reveal the existence of relatively strong interactions between the conducting polymer and the oxide particles. This feature determines higher values of the electrical conductivity (0.5 S cm(-1)) and of the average operative voltage (3.6 V), as well as of other technological parameters of the nanocomposite when it is used as the positive electrode of rechargeable lithium batteries, in comparison to those of the related microcomposite materials already reported.
Resumo:
Thin films of chemically synthesized polyaniline and poly(o-methoxyaniline) were exposed to ionizing X-ray radiation and characterized by radiation induced conductivity measurements, ultraviolet-visible spectroscopy, electron paramagnetic resonance, electrical conductivity and solubility measurements. Samples irradiated in vacuum or dry Oxygen atmosphere did not have their electronic spectra changed. However, under humid atmosphere the energy of the excitonic transition was decreased and accompanied by a great conductivity increase. The results indicate that doping of polyaniline can be induced by X-ray radiation which might be of great interest for applications on lithography and microelectronics.
Resumo:
This work was carried out in order to evaluate if there was a relationship between genotypes and the physiological soybean (Glycine max L.) seed quality. It was conducted during three years using seven cultivars each year. The seeds were harvested at: 1) yellow radicle or expanded pod stage, 2) yellow pod or physiological maturity (R7), 3) harvest maturity (R8), and 4) R8 + 21 days delay. Seed moisture content, standard germination, and vigor tests were performed. The germination and vigor evaluated by accelerated aging and electrical conductivity did not show physiological seed quality differences among genotypes as harvested at physiological maturity. Then, the evaluation of seed germination and vigor, when the environment is not a considered factor, is not an efficient method to show differences among soybean genotypes in terms of seed quality.
Resumo:
The thermal behavior of blends of poly(vinylidene fluoride), or PVDF, and poly(o-methoxyaniline) doped with toluene sulfonic acid was studied by thermogravimetic analysis, electrical conductivity measurements, differential scanning calorimetry, X-ray diffraction and scanning electron microscopy. Blends with thermal and electrical conductivity stabler than the conductive polymer alone were obtained. Nevertheless, degradation occurs after a long period of time (500 h) at high temperatures. The possible association of the conductivity decay with dopant loss, degradation and structural and morphological changes of the blend is discussed. (C) 2000 Elsevier Science Ltd.
Resumo:
Composites produced during the in situ chemical polymerization of aniline on top of a poly(ethylene terephthalate) (PET) film, in different conditions, were studied by open-circuit potential (Voc), ultraviolet-visible, and infrared spectroscopy, electrical conductivity measurements, scanning electron microscopy, and atomic force microscopy. The polymerization monitoring by Voc showed a maximum associated with the intermediate pernigraniline oxidation state and a final formation of polyaniline (PANI) in the doped emeraldine salt (ES) form. Furthermore, high electrical conductivity values were obtained for the PANI-ES coating prepared under selected conditions. A globular formation was observed for the doped PANI-ES coating with globules of sizes of the same order and same shape of the PET, demonstrating the influence of the substrate on the coating morphology.
Resumo:
The abundance of zooplankton in two lakes of Southwest Amazonia was studied for 10 months in different regions and at different periods of the day. The lakes were Lago Amapá, located at 10°02′36″S, 67°50′24″W, and Lago Pirapora, at 9°27′21″S, 67°31′39″. Both lakes are characterized as oxbow lakes. The aim of this study was to compare the pelagic and littoral regions, as well as to determine differences in the distribution of zooplankton in the water column in the morning and at night. Collections were made by filtering water through a 55μm zooplankton net into a 5L Van Dorn bottle, collecting 4L from the top and 5L from the middle and bottom layers, totaling 14L of water for each sampling location. In addition, physical and chemical parameters were measured, including transparency, temperature, pH, dissolved oxygen, electrical conductivity and turbidity. Anova (analysis of variance) and Tukey's test were used. There was no statistically significant difference between the regions studied, nor between the two time periods examined. The results of the Pearson correlation (p<0.05) demonstrated that the physical and chemical characteristics of the water correlated with the cladocerans Moina spp. (represented by M. minuta and M. reticulata) and Ceriodaphnia cornuta, and that Daphnia gessneri was associated with Chaoboridae.
Resumo:
Aim: To evaluate the release of calcium ions, pH and conductivity of a new experimental dental cement (EC) and to compare them with those of mineral trioxide aggregate (MTA-Angelus). Methodology: Five samples of each cement were prepared using plastic tubes 1 mm in diameter and 10 mm long. Each sample was sealed in a test tube containing 10 mL deionized water which was analysed after 24, 48, 72, 96, 192, 240 and 360 h for pH, electrical conductivity and calcium release. The concentration of calcium ions was obtained through atomic absorption spectroscopy technique. The data were analysed statistically using the analysis of variance (ANOVA) and the Student's test (t-test). Results: The pH of the storage solutions was not affected by the material and the interaction of material with time (P > 0.05). However, the time of immersion was significant (P < 0.01) for both materials. For the electric conductivity and calcium release, the interaction of material with time was statistically significant (P < 0.01), indicating that EC and MTA-Angelus did not behave in a similar manner. Conclusions: The experimental cement released calcium and increased the pH of the storage solutions in a similar manner to MTA-Angelus. However, EC showed significantly higher calcium release than commercial MTA-Angelus after 24 h. © 2005 International Endodontic Journal.
Resumo:
The effects of salt concentration levels in electrical conductivity (EC) were evaluated in chrysanthemum root, cultivated in substrate using two sampling methods, under greenhouse conditions. The experiment was carried out in Paranapanema, São Paulo using the experimental design in randomized blocks and four replications. The treatments consisted of eight sampling periods of substrate solutions in pots: 7, 14, 21, 28, 35, 42, 49 and 56 days after strike root and five salt concentration levels of applied saline solution: 1.42; 1.65; 1.89; 2.13 and 2.36 dS m -1 in the vegetative period and during the reproduction period of flower budding: 1.71; 1.97; 2.28; 2.57 and 2.85 dS m -1. The substrate solution EC monitoring was done using two methods: solution extractors and 1:2 water diluted solution. The use of solution extractors and 1:2 water diluted solution allowed substrate solution EC monitoring along the culture cycle; the amount of salt concentration applied in the substrate caused the substrate salinity increase; the method using solution extractors presented higher EC values in the substrate.
Resumo:
Lanthanum chromite (LaCrO3) is one of the most adequate materials for use as interconnector in solid oxide fuel cell (SOFC) applications, due to its intrinsic properties, namely its good electrical conductivity and resistance to environment conditions in fuel cell operations. Due to difficulties in sintering, additives are usually added to help in the densification process. In this work, the influence of added cobalt and strontium, in the sintering of LaCrO3 obtained by combustion synthesis was studied. The starting materials were respectively nitrates of chromium, lanthanum, cobalt and strontium, and urea was used as fuel. The results show that by increasing the strontium and cobalt concentrations it is possible to reduce the temperature of sintering. Using both additives, the sintering processes took place in lesser times than normally used for this material, as well as greater values of density were attained.
Resumo:
Compositional data from 152 stingless bee (Meliponini) honey samples were compiled from studies since 1964, and evaluated to propose a quality standard for this product. Since stingless bee honey has a different composition than Apis mellifera honey, some physicochemical parameters are presented according to stingless bee species. The entomological origin of the honey was known for 17 species of Meliponini from Brazil, one from Costa Rica, six from Mexico, 27 from Panama, one from Surinam, two from Trinidad & Tobago, and seven from Venezuela, most from the genus Melipona. The results varied as follows: moisture (19.9-41.9g/100g), pH (3.15-4.66), free acidity (5.9-109.0meq/Kg), ash (0.01-1.18g/100g), diastase activity (0.9-23.0DN), electrical conductivity (0.49-8.77mS/cm), HMF (0.4-78.4mg/Kg), invertase activity (19.8-90.1IU), nitrogen (14.34-144.00mg/100g), reducing sugars (58.0-75.7g/100g) and sucrose (1.1-4.8g/100g). Moisture content of stingless bee honey is generally higher than the 20% maximum established for A. mellifera honey. Guidelines for further contributions would help make the physicochemical database of meliponine honey more objective, in order to use such data to set quality standards. Pollen analysis should be directed towards the recognition of unifloral honeys produced by stingless bees, in order to obtain standard products from botanical species. A honey quality control campaign directed to both stingless beekeepers and stingless bee honey hunters is needed, as is harmonization of analytical methods. © 2007 Asociación Interciencia.
Resumo:
This work had as objective verifies the water quality used for irrigation by the vegetables producers of Botucatu-SP area. They were interviewed 27 producers that sell vegetables in the street markets of Botucatu. Among these producers, ten were selected, being one of each place. Three samples of water of each source were collected. The main standard to evaluate the obtained results were the CONAMA Resolution (National Environment Council) N° 357, March 17, 2005, that it establishes the standard for water classification. The Electric Conductivity was evaluated of agreement value suggested by CETESB and the color was verified according to OMS (Health World Organization), for potable water due to CONAMA Resolution not to stipulate a value for classification. For the public health, just the coliformes and nitrate are the preoccupying variables for they be related with the incidence of diseases, so, the analyzed waters, 40% of them (A, F, H and J producers) offer some risk for the health of Botucatu population, second established standard for CONAMA. We can to conclude that in a general way, those waters, are in conditions no alarming, because they don't present values very different from those established by the legislation.
Preparation and characterization of castor oil-based polyurethane/poly(o- methoxyaniline) blend film
Resumo:
Blends made up of castor oil-based polyurethane (PU) and poly(o-methoxyaniline) (POMA) were obtained in the form of films by casting and characterized by FTIR, UV-Vis-NIR spectroscopy, and electrical conductivity measurements. Doping was carried out by immersing the films in 1.0M HCl aqueous solution. Chemical bonds between NCO group of PU and NH group of POMA were observed by means of FTIR spectra. The UV-Vis-NIR spectra indicated that the presence of the PU in the blend does not affect doping and formation of the POMA phase. The electrical conductivity research was in the range of 10-3 S/cm. © 2007 Wiley Periodicals, Inc.