939 resultados para Sodium iron ethylenediaminetetraacetic acid
Resumo:
Lignocellulosics represent a renewable resource for producing fuels and chemicals as an alternative to fossil resources. This study utilised an organic acid catalyst and a co-solvent to develop an environmentally friendly processing technology for the production of levulinic acid and furfural from a waste material, sugarcane fibre.
Resumo:
Fatty acid methyl ester (FAME) profiles, together with Biolog substrate utilization patterns, were used in conjunction with measurements of other soil chemical and microbiological properties to describe differences in soil microbial communities induced by increased salinity and alkalinity in grass/legume pastures at three sites in SE South Australia. Total ester-linked FAMEs (EL-FAMEs) and phospholipid-linked FAMEs (PL-FAMEs), were also compared for their ability to detect differences between the soil microbial communities. The level of salinity and alkalinity in affected areas of the pastures showed seasonal variation, being greater in summer than in winter. At the time of sampling for the chemical and microbiological measurements (winter) only the affected soil at site 1 was significantly saline. The affected soils at all three sites had lower organic C and total N concentrations than the corresponding non-affected soils. At site 1 microbial biomass, CO 2-C respiration and the rate of cellulose decomposition was also lower in the affected soil compared to the non-affected soil. Biomarker fatty acids present in both the EL- and PL-FAME profiles indicated a lower ratio of fungal to bacterial fatty acids in the saline affected soil at site 1. Analysis of Biolog substrate utilization patterns indicated that the bacterial community in the affected soil at site 1 utilized fewer carbon substrates and had lower functional diversity than the corresponding community in the non-affected soil. In contrast, increased alkalinity, of major importance at sites 2 and 3, had no effect on microbial biomass, the rate of cellulose decomposition or functional diversity but was associated with significant differences in the relative amounts of several fatty acids in the PL-FAME profiles indicative of a shift towards a bacterial dominated community. Despite differences in the number and relative amounts of fatty acids detected, principal component analysis of the EL- and PL-FAME profiles were equally capable of separating the affected and non-affected soils at all three sites. Redundancy analysis of the FAME data showed that organic C, microbial biomass, electrical conductivity and bicarbonate-extractable P were significantly correlated with variation in the EL-FAME profiles, whereas pH, electrical conductivity, NH 4-N, CO 2-C respiration and the microbial quotient were significantly correlated with variation in the PL-FAME profiles. Redundancy analysis of the Biolog data indicated that cation exchange capacity and bicarbonate-extractable K were significantly correlated with the variation in Biolog substrate utilization patterns.
Resumo:
Knowledge of the amounts and types of fatty acids in groundnut oil is beneficial, particularly from a nutritional standpoint. Germplasm evaluation data for fatty acid composition on 819 accessions of groundnut (Arachis hypogaea L.) from the Australian Tropical Field Crops Genetic Resource Centre, Biloela, Queensland were examined. Data for eight quantitative fatty acid descriptors have been documented. Statistical assessment, via methods of pattern analysis, summarised and described the patterns of variation in fatty acid composition of the groundnut accessions in the Australian germplasm collection. Presentation of the results from principal components analysis and hierarchical cluster analysis using a biplot was shown to be a very useful interpretative tool. Such a biplot enables a simultaneous examination of the relationships among all the accessions and the fatty acids. Unlike that information available via database searches, the results from contribution analysis together with the biplot provide a global picture of the diversity available for use in plant breeding programs. The use of standardised data for eight fatty acids, compared to using three specific fatty acids, provided a better description of the total diversity available because it remains relevant with possible changes in the nutritional preferences for fatty acids. Fatty acid composition was found to vary in relation to the branching pattern of the accessions. This pattern is generally indicative of the botanical types of groundnuts; Virginia (alternate) compared to Spanish and Valencia (sequential) botanical types.
Resumo:
Banana bunchy top disease (BBTD) caused by banana bunchy top virus (BBTV) was radioactively detected by nucleic acid hybridization techniques. Results showed that, 32P-labelled insert of pBT338 was hybridized with nucleic acid extracts from BBTV-infected plants from Egypt and Australia but not with those from CMV-infected plants from Egypt. Results revealed that BBTV was greatly detected in midrib, roots, meristem, corm, leaves and pseudostem respectively. BBTV was also detected in symptomless young plants prepared from diseased plant materials grown under tissue culture conditions but was not present in those performed from healthy plant materials. The sensitivity of dot blot and Southern blot hybridizations for the detection of BBTV was also performed for the detection of BBTV.
Resumo:
Aspergillus terreus is successfully used for industrial production of itaconic acid. The acid is formed from cis-aconitate, an intermediate of the tricarboxylic (TCA) cycle, by catalytic action of cis-aconitate decarboxylase. It could be assumed that strong anaplerotic reactions that replenish the pool of the TCA cycle intermediates would enhance the synthesis and excretion rate of itaconic acid. In the phylogenetic close relative Aspergillus niger, upregulated metabolic flux through glycolysis has been described that acted as a strong anaplerotic reaction. Deregulated glycolytic flux was caused by posttranslational modification of 6-phosphofructo-1-kinase (PFK1) that resulted in formation of a highly active, citrate inhibition-resistant shorter form of the enzyme. In order to avoid complex posttranslational modification, the native A. niger pfkA gene has been modified to encode for an active shorter PFK1 fragment. By the insertion of the modified A. niger pfkA genes into the A. terreus strain, increased specific productivities of itaconic acid and final yields were documented by transformants in respect to the parental strain. On the other hand, growth rate of all transformants remained suppressed which is due to the low initial pH value of the medium, one of the prerequisites for the accumulation of itaconic acid by A. terreus mycelium. © 2010 Springer-Verlag.
Resumo:
The mineral kidwellite, a hydrated hydroxy phosphate of ferric iron and sodium of approximate formula NaFe93+(PO4)6(OH)11⋅3H2O, has been studied using a combination of electron microscopy with EDX and vibrational spectroscopic techniques. Raman spectroscopy identifies an intense band at 978 cm−1 and 1014 cm−1. These bands are attributed to the PO43− ν1 symmetric stretching mode. The ν3 antisymmetric stretching modes are observed by a large number of Raman bands. The series of Raman bands at 1034, 1050, 1063, 1082, 1129, 1144 and 1188 cm−1 are attributed to the ν3 antisymmetric stretching bands of the PO43− and HOPO32− units. The observation of these multiple Raman bands in the symmetric and antisymmetric stretching region gives credence to the concept that both phosphate and hydrogen phosphate units exist in the structure of kidwellite. The series of Raman bands at 557, 570, 588, 602, 631, 644 and 653 cm−1are assigned to the PO43− ν2 bending modes. The series of Raman bands at 405, 444, 453, 467, 490 and 500 cm−1 are attributed to the PO43− and HOPO32− ν4 bending modes. The spectrum is quite broad but Raman bands may be resolved at 3122, 3231, 3356, 3466 and 3580 cm−1. These bands are assigned to water stretching vibrational modes. The number and position of these bands suggests that water is in different molecular environments with differing hydrogen bond distances. Infrared bands at 3511 and 3359 cm−1 are ascribed to the OH stretching vibration of the OH units. Very broad bands at 3022 and 3299 cm−1 are attributed to the OH stretching vibrations of water. Vibrational spectroscopy offers insights into the molecular structure of the phosphate mineral kidwellite.
Resumo:
The possibility to control the morphology and nucleation density of quasi-one-dimensional, single-crystalline α -Fe2 O3 nanostructures by varying the electric potential of iron surfaces exposed to reactive oxygen plasmas is demonstrated experimentally. A systematic increase in the oxygen ion flux through rf biasing of otherwise floating substrates and then an additional increase of the ion/neutral density resulted in remarkable structural transformations of straight nanoneedles into nanowires with controlled tapering/aspect ratio and also in larger nucleation densities. Multiscale numerical simulations relate the microscopic ion flux topographies to the nanostructure nucleation and morphological evolution. This approach is applicable to other metal-oxide nanostructures.
Resumo:
The present invention relates to recombinant cells, particularly recombinant plant cells, which are capable of producing dihydrosterculic acid and/or derivatives thereof. The present invention also relates to methods of producing oil comprising dihydrosterculic acid and/or derivatives thereof.
Resumo:
An innovative approach to precise tailoring of surface density, shapes, and sizes of single-crystalline α-Fe 2O 3 nanowires and nanobelts by controlling interactions of reactive oxygen plasma-generated species with the Fe surface is proposed. This strongly nonequilibrium, rapid, almost incubation-free, high-rate growth directly from the solid-solid interface can also be applied to other oxide materials and is based on deterministic control of the density of oxygen species and the surface conditions, which determine the nanostructure nucleation and growth.
Resumo:
The ubiquitin-proteasome system targets many cellular proteins for degradation and thereby controls most cellular processes. Although it is well established that proteasome inhibition is lethal, the underlying mechanism is unknown. Here, we show that proteasome inhibition results in a lethal amino acid shortage. In yeast, mammalian cells, and flies, the deleterious consequences of proteasome inhibition are rescued by amino acid supplementation. In all three systems, this rescuing effect occurs without noticeable changes in the levels of proteasome substrates. In mammalian cells, the amino acid scarcity resulting from proteasome inhibition is the signal that causes induction of both the integrated stress response and autophagy, in an unsuccessful attempt to replenish the pool of intracellular amino acids. These results reveal that cells can tolerate protein waste, but not the amino acid scarcity resulting from proteasome inhibition.
Resumo:
Ubiquitination involves the attachment of ubiquitin to lysine residues on substrate proteins or itself, which can result in protein monoubiquitination or polyubiquitination. Ubiquitin attachment to different lysine residues can generate diverse substrate-ubiquitin structures, targeting proteins to different fates. The mechanisms of lysine selection are not well understood. Ubiquitination by the largest group of E3 ligases, the RING-family E3 s, is catalyzed through co-operation between the non-catalytic ubiquitin-ligase (E3) and the ubiquitin-conjugating enzyme (E2), where the RING E3 binds the substrate and the E2 catalyzes ubiquitin transfer. Previous studies suggest that ubiquitination sites are selected by E3-mediated positioning of the lysine toward the E2 active site. Ultimately, at a catalytic level, ubiquitination of lysine residues within the substrate or ubiquitin occurs by nucleophilic attack of the lysine residue on the thioester bond linking the E2 catalytic cysteine to ubiquitin. One of the best studied RING E3/ E2 complexes is the Skp1/Cul1/F box protein complex, SCFCdc4, and its cognate E2, Cdc34, which target the CDK inhibitor Sic1 for K48-linked polyubiquitination, leading to its proteasomal degradation. Our recent studies of this model system demonstrated that residues surrounding Sic1 lysines or lysine 48 in ubiquitin are critical for ubiquitination. This sequence-dependence is linked to evolutionarily conserved key residues in the catalytic region of Cdc34 and can determine if Sic1 is mono- or poly-ubiquitinated. Our studies indicate that amino acid determinants in the Cdc34 catalytic region and their compatibility to those surrounding acceptor lysine residues play important roles in lysine selection. This may represent a general mechanism in directing the mode of ubiquitination in E2 s.
Resumo:
This study reports the synthesis, characterization and application of nano zero-valent iron (nZVI). The nZVI was produced by a reduction method and compared with commercial available ZVI powder for Pb2+ removal from aqueous phase. Comparing with commercial ZVI, the laboratory made nZVI powder has a much higher specific surface area. XRD patterns have revealed zero valent iron phases in two ZVI materials. Different morphologies have been observed using SEM and TEM techniques. EDX spectrums revealed even distribution of Pb on surface after reaction. The XPS analysis has confirmed that immobilized lead was present in its zero-valent and bivalent forms. ‘Core-shell’ structure of prepared ZVI was revealed based on combination of XRD and XPS characterizations. In addition, comparing with Fluka ZVI, this lab made nZVI has much higher reactivity towards Pb2+ and within just 15 mins 99.9% removal can be reached. This synthesized nano ZVI material has shown great potential for heavy metal immobilization from waste water.
Resumo:
Nano Zero valent iron (Fe0) were reported as an effective material for azo dye removal, however, similar to other nano-materials, ultra-fine powder has a strong tendency to agglomerate into larger particles, resulting in an adverse effect on both effective surface area and catalyst performance. Here we report nano sized Fe0 particles dispersed onto the surface of natural bentonites. X-ray diffraction was used to study the sample phases. Scanning electron microscopy and transmission electron microscopy were applied to study the morphology and morphological changes. Spherical individual Fe0 particles were observed after dispersion onto bentonites, and these samples were used for orange II (OII) decolourization with wide working pH range. Higher reactivity is attributed to good dispersion of Fe0 particles on clay minerals’ surface. This study is significant for providing novel modified clay based catalyst materials for the decolourization of azo dye contaminants from wastewater.
Resumo:
Amplification of the Plasmodium falciparum multidrug resistance 1 gene (pfmdr1) has been implicated in multidrug resistance, including in vitro resistance to artelinic acid (AL). The stability and fitness of having multiple copies of pfmdr1 are important factors due to their potential effects on the resistance phenotype of parasites. These factors were investigated by using an AL-resistant line of P. falciparum (W2AL80) and clones originating from W2AL80. A rapid reduction in pfmdr1 copy number (CN) was observed in the uncloned W2AL80 line; 63% of this population reverted to a CN of <3 without exposure to the drug. Deamplification of the pfmdr1 amplicon was then determined in three clones, each initially containing three copies of pfmdr1. Interestingly, two outcomes were observed during 3 months without drug pressure. In one clone, parasites with fewer than 3 copies of pfmdr1 emerged rapidly. In two other clones, the reversion was significantly delayed. In all subclones, the reduction in pfmdr1 CN involved the deamplification of the entire amplicon (19 genes). Importantly, deamplification of the pfmdr1 amplicon resulted in partial reversal of resistance to AL and increased susceptibility to mefloquine. These results demonstrate that multiple copies of the pfmdr1-containing amplicon in AL-resistant parasites are unstable when drug pressure is withdrawn and have practical implications for the maintenance and spread of parasites resistant to artemisinin derivatives.
Resumo:
The ligands G1- and G2-oligo (benzyl ether) (PBE) dendrons and their iron(II) complexes [Fe(Gn-PBE)3]A2·xH2O (with n = 1, 2 and A = triflate, tosylate) were prepared. The magnetic properties of the complexes were investigated by a SQUID magnetometer. All complexes exhibit gradual spin transition below room temperature. At very low temperatures the magnetic behaviour reflects zero-field splitting (ZFS) effects. 57Fe-Mössbauer spectroscopy was performed to distinguish between ZFS of high spin species and spin state conversion into the low spin state. Further characterisation was carried out by thermogravimetric analysis (TGA) and FT-IR spectroscopy. Structural features have been determined by powder XRD measurements.