1000 resultados para Size judgment
Resumo:
Highly reactive magnesium powder of nanometric size, which was generated by the thermal decomposition of magnesium anthracene . 3THF under vacuum, can react with N-2 under atmospheric pressure, even at 300 degrees C, to form magnesium nitride. The rate and extent of the reaction can be improved effectively by doping the magnesium powder with a small amount of nickel or titanium compounds.
Resumo:
Magnesium nitride (Mg3N2) was synthesized by the reaction of magnesium in the highly reactive form (Mg*) with nitrogen at 450 degrees C under normal pressure. The effect of doping with nickel dichloride on the nitridation of Mg* was investigated. Differential thermal analysis (DTA) of Mg* systems and transmission electron microscopy (TEM) measurement of the product formed were carried out. TEM measurement showed that the particle size of the Mg3N2 synthesized was in the nanometric range. The dependence of nitridation of the NiCl2-doped Mg* on temperature was investigated at temperatures ranging from 300 to 500 degrees C. The nitridation of NiCl2-doped Mg* could occur even at temperature as low as 300 degrees C. (C) 1999 Kluwer Academic Publishers.
Resumo:
In the history of psychology research, more attention had been focused on the relation between local processing and global processing. For the global information and the local information, which is processed earlier? And which is processed faster? Precedence of the global over the local level in visual perception has been well established by Navon with compound stimuli, and Navon’s original study gave rise to many publications, including replications, generalization to other kinds of stimuli (nonverbal material, digits), populations (infants, children, brain-damaged subjects), and tasks (lateral visual hemifield presentation, copy drawing, memory recognition, and recall), and triggered some debate about the conditions in which global precedence is and is not observed (number, size, sparsity, and goodness of the stimuli, exposure duration, etc.). However, whether there is a global advantage or precedence in other cognitive processes was less tested. Most researches had suggested that there was a functional equivalency between visual perception and visual image processing. However, it’s still unknown whether there will be a global advantage on mental rotation. In the present study, we combined the mental rotation task with the compound stimuli to explore whether the global or local advantage also existed at the mental imagery transformation stages. In two pilot studies, the perceptual global precedence was found to be present in a normal/mirror-image judgment task when the stimuli exposure time was short; while the stimuli exposure time was prolonged (stimuli kept available till subjects’ response) the perceptual global precedence was showed to be eliminated. In all of the subsequent experiments, stimili would be presented till subjects’ response. Then mental rotation was added in normal/mirror-image judgment (some of the stimuli were rotated to certain angles from upright) in normal experiments, experiment 1 and 2 observed a global advantage on mental rotation both with a focused-attention design (Experiment 1) and divided-attention design (Experiment 2). Subjects’ reaction times were increased with rotation angles, and the accuracy was decreased with rotation angles, suggesting that subject need a mental rotation to make a normal/mirror judgment. The most important results were that subjects’ response to global rotation was faster than that to local rotation. The analysis of slope of rotation further indicated that, to some extend, the speed of global rotation was faster than that of local rotation. These results suggest a global advantage on mental rotation. Experiment 3 took advantage of the high temporal resolution of event-related potentials to explore the temporal pattern of global advantage on mental rotation. Event-related potential results indicated the parietal P300 amplitude was inversely related to the character orientation, and the local rotation task delayed the onset of the mental-rotation-related negativity at parietal electrodes. None clear effect was found for occipital N150. All these results suggested that the global rotation was not only processed faster than local rotation, but also occurred earlier than local rotation. Experiments 4 and 5 took the effect size of global advantage as the main dependent variable, and visual angle and exposure duration of the stimuli as independent variables, to examine the relationship between perceptual global precedence and global advantage on mental rotation. Results indicated that visual angle and exposure duration did not influence the effect size of global advantage on mental rotation. The global advantage on mental rotation and the perceptual global advantage seemed to be independent but their effects could be accumulated at some condition. These findings not only contribute to revealing a new processing property of mental rotation, but also deepen our understanding of the problem of global/local processing and shed light on the debate on locus of global precedence.
Resumo:
Size-controllable tin oxide nanoparticles are prepared by heating ethylene glycol solutions containing SnCl2 at atmospheric pressure. The particles were characterized by means of transmission electron microscopic (TEM), X-ray diffraction (XRD) studies. TEM micrographs show that the obtained material are spherical nanoparticles, the size and size distribution of which depends on the initial experimental conditions of pH value, reaction time, water concentration, and tin precursor concentration. The XRD pattern result shows that the obtained powder is SnO2 with tetragonal crystalline structure. On the basis of UV/vis and FTIR characterization, the formation mechanism of SnO2 nanoparticles is deduced. Moreover, the SnO2 nanoparticles were employed to synthesize carbon-supported PtSnO2 catalyst, and it exhibits surprisingly high promoting catalytic activity for ethanol electrooxidation.
Resumo:
Silica-supported Rh catalysts with different Rh particle dimensions were investigated for CO hydrogenation. The catalysts were characterized by various techniques such as TEM, H-2-TPR and N-2 adsorption to study the catalyst morphology, the size distributions of Rh particles and the silica pores. It was found that the distribution and the size of Rh particles were affected by the silica pores, and the metal grains were enclosed in the pores of the support, and thereby their growth was limited. The catalytic activity and selectivity to C-2-oxygenates for CO hydrogenation were found to be significantly controlled by the Rh particle sizes, and the higher activity and selectivity to C2-oxygenates were obtained over bigger Rh particles, within the range of the reported particle sizes.
Resumo:
A new mesoporous sphere-like SBA-15 silica was synthesized and evaluated in terms of its suitability as stationary phases for CEC. The unique and attractive properties of the silica particle are its submicrometer particle size of 400 nm and highly ordered cylindrical mesopores with uniform pore size of 12 nm running along the same direction. The bare silica particles with submicrometer size have been successfully employed for the normal-phase electrochromatographic separation of polar compounds with high efficiency (e.g., 210 000 for thiourea), which is matched well with its submicrometer particle size. The Van Deemeter plot showed the hindrance to mass transfer because of the existence of pore structure. The lowest plate height of 2.0 mu m was obtained at the linear velocity of 1.1 mm/s. On the other hand, because of the relatively high linear velocity (e.g., 4.0 mm/s) can be generated, high-speed separation of neutral compounds, anilines, and basic pharmaceuticals in CEC with C-18-modified SBA-15 silica as stationary phases was achieved within 36, 60, and 34 s, respectively.