939 resultados para Simplified adhesive
Resumo:
Equilibrium of dissolution of sulfur dioxide at ppm levels in aqueous solutions of dilute sulfuric acid is analyzed, and a general expression is derived relating the total concentration of sulfur dioxide in the liquid phase to the partial pressure of SO2 in the gas and to the concentration of sulfuric acid in the solution. The equation is simplified for zero and high concentrations of the acid. Experiments at high concentrations of sulfuric acid have enabled the direct determination of Henry’s constant and its dependency on temperature. Heat of dissolution is -31.47 kJ/mol. Experiments in the absence of sulfuric acid and the related simplified expression have led to the determination of the equilibrium constant of the hydrolysis of aqueous sulfur dioxide and its temperature dependency.The heat of hydrolysis is 15.69 kJ/mol. The model equation with these parameters predicts the experimental data of the present work as well as the reported data very well.
Resumo:
An experimental flow loop with He II flow driven by fountain effect pumps (FEPs) is studied with respect to operation at different flow impedances and with thermal loads applied at different positions. The measured values of temperature, flow rate and pressure drop are compared with calculations resulting from a simplified model which assumes ideal performance of the porous plug and of the heat exchangers and which does not take into account Gorter-Mellink (GM) conduction. The main features of the loop are shown to be well described by this model. Refined calculations with a more complex model, including GM conduction of the He II, are only required for predicting the temperature distribution in some discrete regions of the loop.
Resumo:
A novel approach for simultaneous measurement of static/dynamic strain and temperature with a pair of matched fiber Bragg grating(FBG)s is proposed. When a diode laser locked to the mid reflection frequency of reference FBG is used to illuminate the sensor FBG, reflected intensity changes with strain on sensor FBG. Reference FBG responds with temperature on sensor FBG and is immune to strain, hence, wavelength of the diode laser acts as a signature for temperature measurement. Theoretical sensitivity limit for static strain and temperature are 1.2n epsilon / root Hz and 0.0011 degrees C respectively. Proposed sensor shows a great potential in high sensitive strain measurements with a simplified experimental setup.
Resumo:
The constructional details of an 18-bit binary inductive voltage divider (IVD) for a.c. bridge applications is described. Simplified construction with less number of windings, interconnection of winding through SPDT solid state relays instead of DPDT relays, improves reliability of IVD. High accuracy for most precision measurement achieved without D/A converters. The checks for self consistency in voltage division shows that the error is less than 2 counts in 2(18).
Resumo:
A compression moulded Kevlar-phenolic resin composite consisting of 30 wt% continuous fibres was slid against a steel disc such that the fibre axis was normal to the sliding plane. The sliding experiments were conducted in a normal pressure range of 0.47–4.27 MPa and at a sliding speed of 0.5 ms–1. The initial sliding interaction is abrasive. With further sliding, as patches of polymer transfer film develop on the polymer pin and counterface, the interaction becomes adhesive and steady-state friction is established. The wear resistance of the polymer was found to be related to the stability of this film.
Resumo:
Among various MEMS sensors, a rate gyroscope is one of the most complex sensors from the design point of view. The gyro normally consists of a proof mass suspended by an elaborate assembly of beams that allow the system to vibrate in two transverse modes. The structure is normally analysed and designed using commercial FEM packages such as ANSYS or MEMS specific commercial tools such as Coventor or Intellisuite. In either case, the complexity in analysis rises manyfolds when one considers the etch hole topography and the associated fluid flow calculation for damping. In most cases, the FEM analysis becomes prohibitive and one resorts to equivalent electrical circuit simulations using tools like SABER in Coventor. Here, we present a simplified lumped parameter model of the tuning fork gyro and show how easily it can be implemented using a generic tool like SIMULINK. The results obtained are compared with those obtained from more elaborate and intense simulations in Coventor. The comparison shows that lumped parameter SIMULINK model gives equally good results with fractional effort in modelling and computation. Next, the performance of a symmetric and decoupled vibratory gyroscope structure is also evaluated using this approach and a few modifications are made in this design to enhance the sensitivity of the device.
Resumo:
The flexural strength of the Kevlar/epoxy composite laminates, in the pres ence of unfilled and filled circular defects, was studied. Circular drillings of two different diameters extending up to the neutral axis from the compression face as well as through holes, at three different positions from the midspan, have been considered as simplified cases of dents and defects. Bonded buttons of aluminium metal have been tested and shown to yield a strength-wise compensation for test samples with depressions. Macrography of the failed specimens is also discussed.
Resumo:
In the direction of arrival (DOA) estimation problem, we encounter both finite data and insufficient knowledge of array characterization. It is therefore important to study how subspace-based methods perform in such conditions. We analyze the finite data performance of the multiple signal classification (MUSIC) and minimum norm (min. norm) methods in the presence of sensor gain and phase errors, and derive expressions for the mean square error (MSE) in the DOA estimates. These expressions are first derived assuming an arbitrary array and then simplified for the special case of an uniform linear array with isotropic sensors. When they are further simplified for the case of finite data only and sensor errors only, they reduce to the recent results given in [9-12]. Computer simulations are used to verify the closeness between the predicted and simulated values of the MSE.
Resumo:
We consider a wireless sensor network whose main function is to detect certain infrequent alarm events, and to forward alarm packets to a base station, using geographical forwarding. The nodes know their locations, and they sleep-wake cycle, waking up periodically but not synchronously. In this situation, when a node has a packet to forward to the sink, there is a trade-off between how long this node waits for a suitable neighbor to wake up and the progress the packet makes towards the sink once it is forwarded to this neighbor. Hence, in choosing a relay node, we consider the problem of minimizing average delay subject to a constraint on the average progress. By constraint relaxation, we formulate this next hop relay selection problem as a Markov decision process (MDP). The exact optimal solution (BF (Best Forward)) can be found, but is computationally intensive. Next, we consider a mathematically simplified model for which the optimal policy (SF (Simplified Forward)) turns out to be a simple one-step-look-ahead rule. Simulations show that SF is very close in performance to BF, even for reasonably small node density. We then study the end-to-end performance of SF in comparison with two extremal policies: Max Forward (MF) and First Forward (FF), and an end-to-end delay minimising policy proposed by Kim et al. 1]. We find that, with appropriate choice of one hop average progress constraint, SF can be tuned to provide a favorable trade-off between end-to-end packet delay and the number of hops in the forwarding path.
Resumo:
A simplified analysis is employed to handle a class of singular integro-differential equations for their solutions
Resumo:
An experimental investigation was carried out to Characterise the performance of four types of cast iron under adhesive wear, erosive wear, cavitation erosion and low frequency thermal cycling. Results indicate that vermicular graphite iron has the best rating among the cast irons investigate,based on the overall performance as well as cost consideration.
Resumo:
The paper analyses the effect of spatial smoothing on the performance of MUSIC algorithm. In particular, an attempt is made to bring out two effects of the smoothing: (i) reduction of effective correlation between the impinging signals and (ii) reduction of the noise perturbations due to finite data. For the case of a two-source scenario with widely spaced sources, simplified expressions for improvement with smoothing have been obtained which provide more insight into the impact of smoothing. Specifically, a pessimistic estimate of the minimum value of source correlation beyond which the smoothing is beneficial is brought out by these expressions. Computer simulations are used to demonstrate the usefulness of the analytical results.
Resumo:
Indexing of a decagonal quasicrystal using the scheme utilizing five planar vectors and one perpendicular to them is examined in detail. A method for determining the indices of zone axes that a reciprocal vector would make in a decagonal phase of any periodicity has been proposed. By this method, the location of the zone axes made by any reciprocal vector can be predicted. The orthogonality condition has been simplified for the zone axes containing twofold vectors. The locations of zone axes have also been determined by an alternative method, utilizing spherical trigonometric calculations, which confirm the zone-axis locations given by the indices. The effect of one-dimensional periodicity on the indices and the accuracy of the zone-axis determination is discussed. Rules for the formation of zone axes between several reciprocal vectors and the prediction of all the reciprocal vectors in a zone are evolved.
Resumo:
We present a simplified and quantitative analysis of the Seebeck coefficient in degenerate bulk and quantum well materials whose conduction band electrons obey Kane's non-parabolic energy dispersion relation. We use k.p formalism to include the effect of the overlap function due to the band non-parabolicity in the Seebeck coefficient. We also address the key issues and the conditions in which the Seebeck coefficient in quantum wells should exhibit oscillatory dependency with the film thickness under the acoustic phonon and ionized impurity scattering. The effect of screening length in degenerate bulk and quantum wells has also been generalized for the determination of ionization scattering. The well-known expressions of the Seebeck coefficient in non-degenerate wide band gap materials for both bulk and quantum wells has been obtained as a special case and this provides an indirect proof of our generalized theoretical analysis.
Resumo:
Zinc oxide ceramic varistors with simplified compositions of ZnO+Bi2O3+Co3O4+M(2)O (M=K or Na) show nonlinearity coefficients (alpha) of 40-75. The electron paramagnetic resonance spectra and optical reflectance spectra show that there is a direct interdependence between the oxidation state of transition metals and the alkali ions. The X-ray photoelectron spectra indicate that the alkali ions preserve a higher oxidation state of cobalt, Co(III), in the grain boundary regions than in the grain interiors having more Co(II). Admittance spectroscopy shows that, while the nature of traps remains unaltered, the trap density increases with the concentration of alkali ions near the interface. The observed defect states are associated with the grain bulk than with the grain boundary interfaces, as indicated by the isothermal capacitance transient signals