906 resultados para Short-term Recall
Resumo:
Physiological responses (ingestion rate, absorption rate and efficiency, respiration, rate, excretion rate) and scope for growth of a subtidal scavenging gastropod Nassarius conoidalis under the combined effects of ocean acidification (pCO2 levels: 380, 950, 1250 µatm) and temperature (15, 30 °C) were investigated for 31 days. There was a significant reduction in all the physiological rates and scope for growth following short-term exposure (1-3 days) to elevated pCO2 except absorption efficiency at 15 °C and 30 °C, and respiration rate and excretion rate at 15 °C. The percentage change in the physiological rates ranged from 0% to 90% at 15 °C and from 0% to 73% at 30 °C when pCO2 was increased from 380 µatm to 1250 µatm. The effect of pCO2 on the physiological rates was enhanced at high temperature for ingestion, absorption, respiration and excretion. When the exposure period was extended to 31 days, the effect of pCO2 was significant on the ingestion rate only. All the physiological rates remained unchanged when temperature increased from 24 °C to 30 °C but the rates at 15 °C were significantly lower, irrespective of the duration of exposure. Our data suggested that a medium-term exposure to ocean acidification has no effect on the energetics of N. conoidalis. Nevertheless, the situation may be complicated by a longer term of exposure and/or a reduction in salinity in a warming world.
Resumo:
In an attempt to improve behavioral memory, we devised a strategy to amplify the signal-to-noise ratio of the cAMP pathway, which plays a central role in hippocampal synaptic plasticity and behavioral memory. Multiple high-frequency trains of electrical stimulation induce long-lasting long-term potentiation, a form of synaptic strengthening in hippocampus that is greater in both magnitude and persistence than the short-lasting long-term potentiation generated by a single tetanic train. Studies using pharmacological inhibitors and genetic manipulations have shown that this difference in response depends on the activity of cAMP-dependent protein kinase A. Genetic studies have also indicated that protein kinase A and one of its target transcription factors, cAMP response element binding protein, are important in memory in vivo. These findings suggested that amplification of signals through the cAMP pathway might lower the threshold for generating long-lasting long-term potentiation and increase behavioral memory. We therefore examined the biochemical, physiological, and behavioral effects in mice of partial inhibition of a hippocampal cAMP phosphodiesterase. Concentrations of a type IV-specific phosphodiesterase inhibitor, rolipram, which had no significant effect on basal cAMP concentration, increased the cAMP response of hippocampal slices to stimulation with forskolin and induced persistent long-term potentiation in CA1 after a single tetanic train. In both young and aged mice, rolipram treatment before training increased long- but not short-term retention in freezing to context, a hippocampus-dependent memory task.