906 resultados para Short-range harmonic oscillator


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Short-termism among firms, the tendency to excessively discount long-term benefits and favour less valuable short-term benefits, has been a prominent issue in business and public policy debates but research to date has been inconclusive. We study how managers frame, interpret, and resolve problems of intertemporal choice in actual decisions by using computer aided text analysis to measure the frequency of top-team temporal references in 1653 listed Australian firms between 1992-2005. Contrary to short-termism arguments we find evidence of a significant general increase in Future orientation and a significant decrease in Current/Past orientation. We also show top-teams’ temporal orientation is related to their strategic orientation, specifically the extent to which they focus on Innovation-Expansion and Capacity Building.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Emissions from airport operations are of significant concern because of their potential impact on local air quality and human health. The currently limited scientific knowledge of aircraft emissions is an important issue worldwide, when considering air pollution associated with airport operation, and this is especially so for ultrafine particles. This limited knowledge is due to scientific complexities associated with measuring aircraft emissions during normal operations on the ground. In particular this type of research has required the development of novel sampling techniques which must take into account aircraft plume dispersion and dilution as well as the various particle dynamics that can affect the measurements of the aircraft engine plume from an operational aircraft. In order to address this scientific problem, a novel mobile emission measurement method called the Plume Capture and Analysis System (PCAS), was developed and tested. The PCAS permits the capture and analysis of aircraft exhaust during ground level operations including landing, taxiing, takeoff and idle. The PCAS uses a sampling bag to temporarily store a sample, providing sufficient time to utilize sensitive but slow instrumental techniques to be employed to measure gas and particle emissions simultaneously and to record detailed particle size distributions. The challenges in relation to the development of the technique include complexities associated with the assessment of the various particle loss and deposition mechanisms which are active during storage in the PCAS. Laboratory based assessment of the method showed that the bag sampling technique can be used to accurately measure particle emissions (e.g. particle number, mass and size distribution) from a moving aircraft or vehicle. Further assessment of the sensitivity of PCAS results to distance from the source and plume concentration was conducted in the airfield with taxiing aircraft. The results showed that the PCAS is a robust method capable of capturing the plume in only 10 seconds. The PCAS is able to account for aircraft plume dispersion and dilution at distances of 60 to 180 meters downwind of moving a aircraft along with particle deposition loss mechanisms during the measurements. Characterization of the plume in terms of particle number, mass (PM2.5), gaseous emissions and particle size distribution takes only 5 minutes allowing large numbers of tests to be completed in a short time. The results were broadly consistent and compared well with the available data. Comprehensive measurements and analyses of the aircraft plumes during various modes of the landing and takeoff (LTO) cycle (e.g. idle, taxi, landing and takeoff) were conducted at Brisbane Airport (BNE). Gaseous (NOx, CO2) emission factors, particle number and mass (PM2.5) emission factors and size distributions were determined for a range of Boeing and Airbus aircraft, as a function of aircraft type and engine thrust level. The scientific complexities including the analysis of the often multimodal particle size distributions to describe the contributions of different particle source processes during the various stages of aircraft operation were addressed through comprehensive data analysis and interpretation. The measurement results were used to develop an inventory of aircraft emissions at BNE, including all modes of the aircraft LTO cycle and ground running procedures (GRP). Measurements of the actual duration of aircraft activity in each mode of operation (time-in-mode) and compiling a comprehensive matrix of gas and particle emission rates as a function of aircraft type and engine thrust level for real world situations was crucial for developing the inventory. The significance of the resulting matrix of emission rates in this study lies in the estimate it provides of the annual particle emissions due to aircraft operations, especially in terms of particle number. In summary, this PhD thesis presents for the first time a comprehensive study of the particle and NOx emission factors and rates along with the particle size distributions from aircraft operations and provides a basis for estimating such emissions at other airports. This is a significant addition to the scientific knowledge in terms of particle emissions from aircraft operations, since the standard particle number emissions rates are not currently available for aircraft activities.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bag sampling techniques can be used to temporarily store an aerosol and therefore provide sufficient time to utilize sensitive but slow instrumental techniques for recording detailed particle size distributions. Laboratory based assessment of the method were conducted to examine size dependant deposition loss coefficients for aerosols held in VelostatTM bags conforming to a horizontal cylindrical geometry. Deposition losses of NaCl particles in the range of 10 nm to 160 nm were analysed in relation to the bag size, storage time, and sampling flow rate. Results of this study suggest that the bag sampling method is most useful for moderately short sampling periods of about 5 minutes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effects of particulate matter on environment and public health have been widely studied in recent years. A number of studies in the medical field have tried to identify the specific effect on human health of particulate exposure, but agreement amongst these studies on the relative importance of the particles’ size and its origin with respect to health effects is still lacking. Nevertheless, air quality standards are moving, as the epidemiological attention, towards greater focus on the smaller particles. Current air quality standards only regulate the mass of particulate matter less than 10 μm in aerodynamic diameter (PM10) and less than 2.5 μm (PM2.5). The most reliable method used in measuring Total Suspended Particles (TSP), PM10, PM2.5 and PM1 is the gravimetric method since it directly measures PM concentration, guaranteeing an effective traceability to international standards. This technique however, neglects the possibility to correlate short term intra-day variations of atmospheric parameters that can influence ambient particle concentration and size distribution (emission strengths of particle sources, temperature, relative humidity, wind direction and speed and mixing height) as well as human activity patterns that may also vary over time periods considerably shorter than 24 hours. A continuous method to measure the number size distribution and total number concentration in the range 0.014 – 20 μm is the tandem system constituted by a Scanning Mobility Particle Sizer (SMPS) and an Aerodynamic Particle Sizer (APS). In this paper, an uncertainty budget model of the measurement of airborne particle number, surface area and mass size distributions is proposed and applied for several typical aerosol size distributions. The estimation of such an uncertainty budget presents several difficulties due to i) the complexity of the measurement chain, ii) the fact that SMPS and APS can properly guarantee the traceability to the International System of Measurements only in terms of number concentration. In fact, the surface area and mass concentration must be estimated on the basis of separately determined average density and particle morphology. Keywords: SMPS-APS tandem system, gravimetric reference method, uncertainty budget, ultrafine particles.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The study focuses on an alluvial plain situated within a large meander of the Logan River at Josephville near Beaudesert which supports a factory that processes gelatine. The plant draws water from on site bores, as well as the Logan River, for its production processes and produces approximately 1.5 ML per day (Douglas Partners, 2004) of waste water containing high levels of dissolved ions. At present a series of treatment ponds are used to aerate the waste water reducing the level of organic matter; the water is then used to irrigate grazing land around the site. Within the study the hydrogeology is investigated, a conceptual groundwater model is produced and a numerical groundwater flow model is developed from this. On the site are several bores that access groundwater, plus a network of monitoring bores. Assessment of drilling logs shows the area is formed from a mixture of poorly sorted Quaternary alluvial sediments with a laterally continuous aquifer comprised of coarse sands and fine gravels that is in contact with the river. This aquifer occurs at a depth of between 11 and 15 metres and is overlain by a heterogeneous mixture of silts, sands and clays. The study investigates the degree of interaction between the river and the groundwater within the fluvially derived sediments for reasons of both environmental monitoring and sustainability of the potential local groundwater resource. A conceptual hydrogeological model of the site proposes two hydrostratigraphic units, a basal aquifer of coarse-grained materials overlain by a thick semi-confining unit of finer materials. From this, a two-layer groundwater flow model and hydraulic conductivity distribution was developed based on bore monitoring and rainfall data using MODFLOW (McDonald and Harbaugh, 1988) and PEST (Doherty, 2004) based on GMS 6.5 software (EMSI, 2008). A second model was also considered with the alluvium represented as a single hydrogeological unit. Both models were calibrated to steady state conditions and sensitivity analyses of the parameters has demonstrated that both models are very stable for changes in the range of ± 10% for all parameters and still reasonably stable for changes up to ± 20% with RMS errors in the model always less that 10%. The preferred two-layer model was found to give the more realistic representation of the site, where water level variations and the numerical modeling showed that the basal layer of coarse sands and fine gravels is hydraulically connected to the river and the upper layer comprising a poorly sorted mixture of silt-rich clays and sands of very low permeability limits infiltration from the surface to the lower layer. The paucity of historical data has limited the numerical modelling to a steady state one based on groundwater levels during a drought period and forecasts for varying hydrological conditions (e.g. short term as well as prolonged dry and wet conditions) cannot reasonably be made from such a model. If future modelling is to be undertaken it is necessary to establish a regular program of groundwater monitoring and maintain a long term database of water levels to enable a transient model to be developed at a later stage. This will require a valid monitoring network to be designed with additional bores required for adequate coverage of the hydrogeological conditions at the Josephville site. Further investigations would also be enhanced by undertaking pump testing to investigate hydrogeological properties in the aquifer.