959 resultados para Ship roll damping


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Changes in modern structural design have created a demand for products which are light but possess high strength. The objective is a reduction in fuel consumption and weight of materials to satisfy both economic and environmental criteria. Cold roll forming has the potential to fulfil this requirement. The bending process is controlled by the shape of the profile machined on the periphery of the rolls. A CNC lathe can machine complicated profiles to a high standard of precision, but the expertise of a numerical control programmer is required. A computer program was developed during this project, using the expert system concept, to calculate tool paths and consequently to expedite the procurement of the machine control tapes whilst removing the need for a skilled programmer. Codifying the expertise of a human and the encapsulation of knowledge within a computer memory, destroys the dependency on highly trained people whose services can be costly, inconsistent and unreliable. A successful cold roll forming operation, where the product is geometrically correct and free from visual defects, is not easy to attain. The geometry of the sheet after travelling through the rolling mill depends on the residual strains generated by the elastic-plastic deformation. Accurate evaluation of the residual strains can provide the basis for predicting the geometry of the section. A study of geometric and material non-linearity, yield criteria, material hardening and stress-strain relationships was undertaken in this research project. The finite element method was chosen to provide a mathematical model of the bending process and, to ensure an efficient manipulation of the large stiffness matrices, the frontal solution was applied. A series of experimental investigations provided data to compare with corresponding values obtained from the theoretical modelling. A computer simulation, capable of predicting that a design will be satisfactory prior to the manufacture of the rolls, would allow effort to be concentrated into devising an optimum design where costs are minimised.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A detailed literature survey confirmed cold roll-forming to be a complex and little understood process. In spite of its growing value, the process remains largely un-automated with few principles used in set-up of the rolling mill. This work concentrates on experimental investigations of operating conditions in order to gain a scientific understanding of the process. The operating conditions are; inter-pass distance, roll load, roll speed, horizontal roll alignment. Fifty tests have been carried out under varied operating conditions, measuring section quality and longitudinal straining to give a picture of bending. A channel section was chosen for its simplicity and compatibility with previous work. Quality measurements were measured in terms of vertical bow, twist and cross-sectional geometric accuracy, and a complete method of classifying quality has been devised. The longitudinal strain profile was recorded, by the use of strain gauges attached to the strip surface at five locations. Parameter control is shown to be important in allowing consistency in section quality. At present rolling mills are constructed with large tolerances on operating conditions. By reduction of the variability in parameters, section consistency is maintained and mill down-time is reduced. Roll load, alignment and differential roll speed are all shown to affect quality, and can be used to control quality. Set-up time is reduced by improving the design of the mill so that parameter values can be measured and set, without the need for judgment by eye. Values of parameters can be guided by models of the process, although elements of experience are still unavoidable. Despite increased parameter control, section quality is variable, if only due to variability in strip material properties. Parameters must therefore be changed during rolling. Ideally this can take place by closed-loop feedback control. Future work lies in overcoming the problems connected with this control.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cold roll forming is an extremely important but little studied sheet metal forming process. In this thesis, the process of cold roll forming is introduced and it is seen that form roll design is central to the cold roll forming process. The conventional design and manufacture of form rolls is discussed and it is observed that surrounding the design process are a number of activities which although peripheral are time consuming and a possible source of error. A CAD/CAM system is described which alleviates many of the problems traditional to form roll design. New techniques for the calculation of strip length and controlling the means of forming bends are detailed. The CAD/CAM system's advantages and limitations are discussed and, whilst the system has numerous significant advantages, its principal limitation can be said to be the need to manufacture form rolls and test them on a mill before a design can be stated satisfactory. A survey of the previous theoretical and experimental analysis of cold roll forming is presented and is found to be limited. By considering the previous work, a method of numerical analysis of the cold roll forming process is proposed based on a minimum energy approach. Parallel to the numerical analysis, a comprehensive range of software has been developed to enhance the designer's visualisation of the effects of his form roll design. A complementary approach to the analysis of form roll design is the generation of form roll design, a method for the partial generation of designs is described. It is suggested that the two approaches should continue in parallel and that the limitation of each approach is knowledge of the cold roll forming process. Hence, an initial experimental investigation of the rolling of channel sections is described. Finally, areas of potential future work are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The damping behaviour of the cold chamber pressure-die-casting alloy: M3, ZA8, ZA27, ZM11, Cosmal, Supercosmal and newly developed ZA27H1 and ZA27H2 was investigated at room temperature and elevated temperatures of up to 90 degrees C. The damping properties of the alloys were established at all temperatures. Formulas were established to predict damping properties of each alloy at any given temperature. The prediction formulae were found to be very accurate. All of the experimental alloys were heterogenous with varying microstructure and grain size; this was the major contribution and dominated the damping properties of the alloys. Super cosmal and ZA27 possessed the highest tensile strength but ZA27H1, ZA27H2 and ZM11 showed the highest damping properties. The relationship between microstructure and damping capacity of all alloys was also examined using back-scattered electron on the SEM. Further more detailed examinations of the microstructures of alloys ZM11, Cosmal and Supercosmal were carried out on the transmission electron microscope in order to establish the phases present in all alloys. These helped to obtain the mechanism of damping in the experimental alloys. The main damping mechanism in most of the experimental alloys was due to grain-boundary-sliding. Micro structural examinations also revealed the absence of -phase in the Cosmal and Supercosmal. This was thought to be due to a change in solid solubility of the alloys, which could have been caused by the addition of Si.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The conventional design of forming rolls depends heavily on the individual skill of roll designers which is based on intuition and knowledge gained from previous work. Roll design is normally a trial an error procedure, however with the progress of computer technology, CAD/CAM systems for the cold roll-forming industry have been developed. Generally, however, these CAD systems can only provide a flower pattern based on the knowledge obtained from previously successful flower patterns. In the production of ERW (Electric Resistance Welded) tube and pipe, the need for a theoretical simulation of the roll-forming process, which can not only predict the occurrence of the edge buckling but also obtain the optimum forming condition, has been recognised. A new simulation system named "CADFORM" has been devised that can carry out the consistent forming simulation for this tube-making process. The CADFORM system applied an elastic-plastic stress-strain analysis and evaluate edge buckling by using a simplified model of the forming process. The results can also be visualised graphically. The calculated longitudinal strain is obtained by considering the deformation of lateral elements and takes into account the reduction in strains due to the fin-pass roll. These calculated strains correspond quite well with the experimental results. Using the calculated strains, the stresses in the strip can be estimated. The addition of the fin-pass roll reduction significantly reduces the longitudinal compressive stress and therefore effectively suppresses edge buckling. If the calculated longitudinal stress is controlled, by altering the forming flower pattern so it does not exceed the buckling stress within the material, then the occurrence of edge buckling can be avoided. CADFORM predicts the occurrence of edge buckling of the strip in tube-making and uses this information to suggest an appropriate flower pattern and forming conditions which will suppress the occurrence of the edge buckling.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The recent development of using negative stiffness inclusions to achieve extreme overall stiffness and mechanical damping of composite materials reveals a new avenue for constructing high performance materials. One of the negative stiffness sources can be obtained from phase transforming materials in the vicinity of their phase transition, as suggested by the Landau theory. To understand the underlying mechanism from a microscopic viewpoint, we theoretically analyze a 2D, nested triangular lattice cell with pre-chosen elements containing negative stiffness to demonstrate anomalies in overall stiffness and damping. Combining with current knowledge from continuum models, based on the composite theory, such as the Voigt, Reuss, and Hashin-Shtrikman model, we further explore the stability of the system with Lyapunov's indirect stability theorem. The evolution of the microstructure in terms of the discrete system is discussed. A potential application of the results presented here is to develop special thin films with unusual in-plane mechanical properties. © 2006 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report the first use of a multicore fibre incorporating fibre Bragg grating strain sensors in each core as a fibre optic pitch and roll sensor. A length of four-core fibre supported at one end forms a cantilever. The differential strains between opposite grating pairs depend on the fibre’s orientation in pitch (in the vertical plane) and roll (azimuth) with respect to gravity. Resolutions of ±2◦ in roll and ±15◦ in pitch were measured.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Some oscillation criteria for solutions of a general perturbed second order ordinary differential equation with damping (r(t)x′ (t))′ + h(t)f (x)x′ (t) + ψ(t, x) = H(t, x(t), x′ (t)) with alternating coefficients are given. The results obtained improve and extend some existing results in the literature.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The blue and black dress that “melted the Internet” is thought to have done so because its perceived color depended on people using different prior assumptions about discounting the illuminant. However, this is not the first monochromatic object to have confused the public. For a brief period during WWI, RMS Mauretania was dressed in (dazzle) camouflage shades of blue and black/grey, yet she is sometimes depicted by artists, modelers, and historians in a much showier dress of red, blue, yellow, green, and black. I raise the possibility that this originates from a case of public deception deriving from the momentary misperception of a playful artist who neglected to discount the illuminant, propagating the most (perhaps only) successful application of dazzle camouflage known.