967 resultados para Shear bond strength test
Resumo:
The use of rats in studies that seek to monitor the effects of physical exercise is fairly common, even in works that make use of overload. However, the correct determination of the training load is critical to success of studies. Thus, with the objective of verifying the correlation of total body mass of the rats with their respective strength, and the correlation of the 1RM test with test repetitions, 40 rats, 90 days old and weighing average 0,49 pounds underwent a program of adaptation to the water and then were subjected to tests to determine the maximal and submaximal loads. After measuring the total body mass and maximal and submaximal strenght, it was possible to observe directly proportional relationship between maximum strenght and total body mass of 0.97 (P ≤ 0.01), being the maximum muscle strength equivalent to 109% of the total body mass. Between muscle strength and mass submaximal muscle strength was also found direct correlation between the variables, allowing to conclude that the submaximal strength test and total body mass are effective tools in determining the training load of rats.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The multiphase steels are gaining increasing attention in scientific studies because of the different mechanical and microstructural properties that the material can achieve under different thermomechanical and heat treatments that can be submitted. In the present study, it was made a microstructural study thru the triple attack technic associated with optical microscopy and mechanical characterization of medium carbon AISI 4350 steel thru a tensile strength test, subjected to three routes of heat treatment: annealing, quenching and tempering and isothermal annealing. It was verified the predominance of ferrite-perlite constituent in the specimen annealed, martensitic in the quenched and tempered specimen and bainitic in the annealed isothermally specimen. The annealed material showed a higher ductility, while the hardened and tempered specimen showed the highest hardness and ultimately the bainitic specimen showed a combination of the two abovementioned mechanical properties. Thus, we proved that the multiphase steel SAE 4350 can be a versatile material with great potential for various industrial applications
Resumo:
Pós-graduação em Desenvolvimento Humano e Tecnologias - IBRC
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The multiphase steels are gaining increasing attention in scientific studies because of the different mechanical and microstructural properties that the material can achieve under different thermomechanical and heat treatments that can be submitted. In the present study, it was made a microstructural study thru the triple attack technic associated with optical microscopy and mechanical characterization of medium carbon AISI 4350 steel thru a tensile strength test, subjected to three routes of heat treatment: annealing, quenching and tempering and isothermal annealing. It was verified the predominance of ferrite-perlite constituent in the specimen annealed, martensitic in the quenched and tempered specimen and bainitic in the annealed isothermally specimen. The annealed material showed a higher ductility, while the hardened and tempered specimen showed the highest hardness and ultimately the bainitic specimen showed a combination of the two abovementioned mechanical properties. Thus, we proved that the multiphase steel SAE 4350 can be a versatile material with great potential for various industrial applications
Resumo:
Pós-graduação em Desenvolvimento Humano e Tecnologias - IBRC
Resumo:
Bertuzzi, R, Bueno, S, Pasqua, LA, Acquesta, FM, Batista, MB, Roschel, H, Kiss, MAPDM, Serrao, JC, Tricoli, V, and Ugrinowitsch, C. Bioenergetics and neuromuscular determinants of the time to exhaustion at velocity corresponding to (V) over dotO(2)max in recreational long-distance runners. J Strength Cond Res 26(8): 2096-2102, 2012-The purpose of this study was to investigate the main bioenergetics and neuromuscular determinants of the time to exhaustion (T-lim) at the velocity corresponding to maximal oxygen uptake in recreational long-distance runners. Twenty runners performed the following tests on 5 different days: (a) maximal incremental treadmill test, (b) 2 submaximal tests to determine running economy and vertical stiffness, (c) exhaustive test to measured the T-lim, (d) maximum dynamic strength test, and (e) muscle power production test. Aerobic and anaerobic energy contributions during the T-lim test were also estimated. The stepwise multiple regression method selected 3 independent variables to explain T-lim variance. Total energy production explained 84.1% of the shared variance (p = 0.001), whereas peak oxygen uptake ((V) over dotO(2)peak) measured during T-lim and lower limb muscle power ability accounted for the additional 10% of the shared variance (p = 0.014). These data suggest that the total energy production, (V) over dotO(2)peak, and lower limb muscle power ability are the main physiological and neuromuscular determinants of T-lim in recreational long-distance runners.
Resumo:
Cellulose fibers obtained from the textile industry (lyocell) were investigated as a potential reinforcement for thermoset phenolic matrices, to improve their mechanical properties. Textile cotton fibers were also considered. The fibers were characterized in terms of their chemical composition and analyzed using TGA, SEM, and X-ray. The thermoset (non-reinforced) and composites (phenolic matrices reinforced with randomly dispersed fibers) were characterized using TG, DSC, SEM, DMTA, the Izod impact strength test, and water absorption capacity analysis. The composites that were reinforced with lyocell fibers exhibited impact strengths of nearly 240 Jm(-1), whereas those reinforced with cotton fibers exhibited impact strengths of up to 773 Jm(-1). In addition to the aspect ratio, the higher crystallinity of cotton fibers compared to lyocell likely plays a role in the impact strength of the composite reinforced by the fibers. The SEM images showed that the porosity of the textile fibers allowed good bulk diffusion of the phenolic resin, which, in turn, led to both good adhesion of fiber to matrix and fewer microvoids at the interface.
Resumo:
The aim of this study was to evaluate the resindentin bonds of two simplified etch-and-rinse adhesive after simulated cariogenic and inhibited cariogenic challenge in situ. Dental cavities (4 mm wide, 4 mm long, and 1.5 mm deep) were prepared in 60 bovine teeth with enamel margins. Restorations were bonded with either adhesive Adper Single Bond 2 (3MESPE) or Optibond Solo Plus (Kerr). Forty restorations were included in an intra-oral palatal appliance that was used for 10 adult volunteers while the remaining 20 dental blocks were not submitted to any cariogenic challenge [NC group] and tested immediately. For the simulated cariogenic challenge [C+DA], each volunteer dropped 20% sucrose solution onto all blocks four times a day during 14 days and distilled water twice a day. In the inhibited cariogenic challenge group [C + FA], the same procedure was done, but slurry of fluoride dentifrice (1.100 ppm) was applied instead of water. The restored bovine blocks were sectioned to obtain a slice for cross-sectional Vickers microhardness evaluation and resindentin bonded sticks (0.8 mm2) for resindentin microtensile evaluation. Data were evaluated by two-way ANOVA and Tukey's tests (a = 0.05). Statistically lower microhardness values and degradation of the resindentin bonds were only found in the C + DW group for both adhesives. The in situ model seems to be a suitable short-term methodology to investigate the degradation of the resindentin bonds under a more realistic condition. (c) 2012 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 100B: 14661471, 2012.
Resumo:
Objectives: This study aimed to compare the micro-tensile bond strength of methacrylate resin systems to a silorane-based restorative system on dentin after 24 hours and six months water storage. Material and Methods: The restorative systems Adper Single Bond 2/Filtek Z350 (ASB), Clearfil SE Bond/Z350 (CF), Adper SE Plus/Z350 (ASEP) and P90 Adhesive System/Filtek P90 (P90) were applied on flat dentin surfaces of 20 third molars (n=5). The restored teeth were sectioned perpendicularly to the bonding interface to obtain sticks (0.8 mm2) to be tested after 24 hours (24 h) and 6 months (6 m) of water storage, in a universal testing machine at 0.5 mm/min. The data was analyzed via two-way Analysis of Variance/Bonferroni post hoc tests at 5% global significance. Results: Overall outcomes did not indicate a statistical difference for the resin systems (p=0.26) nor time (p=0.62). No interaction between material × time was detected (p=0.28). Mean standard-deviation in MPa at 24 h and 6 m were: ASB 31.38 (4.53) and 30.06 (1.95), CF 34.26 (3.47) and 32.75 (4.18), ASEP 29.54 (4.14) and 33.47 (2.47), P90 30.27 (2.03) and 31.34 (2.19). Conclusions: The silorane-based system showed a similar performance to methacrylate-based materials on dentin. All systems were stable in terms of bond strength up to 6 month of water storage.
Resumo:
Adhesive bonding provides solutions to realize cost effective and low weight aircraft fuselage structures, in particular where the Damage Tolerance (DT) is the design criterion. Bonded structures that combine Metal Laminates (MLs) and eventually Selective Reinforcements can guarantee slow crack propagation, crack arrest and large damage capability. To optimize the design exploiting the benefit of bonded structures incorporating selective reinforcement requires reliable analysis tools. The effect of bonded doublers / selective reinforcements is very difficult to be predicted numerically or analytically due to the complexity of the underlying mechanisms and failures modes acting. Reliable predictions of crack growth and residual strength can only be based on sound empirical and phenomenological considerations strictly related to the specific structural concept. Large flat stiffened panels that combine MLs and selective reinforcements have been tested with the purpose of investigating solutions applicable to pressurized fuselages. The large test campaign (for a total of 35 stiffened panels) has quantitatively investigated the role of the different metallic skin concepts (monolithic vs. MLs) of the aluminum, titanium and glass-fiber reinforcements, of the stringers material and cross sections and of the geometry and location of doublers / selective reinforcements. Bonded doublers and selective reinforcements confirmed to be outstanding tools to improve the DT properties of structural elements with a minor weight increase. However the choice of proper materials for the skin and the stringers must be not underestimated since they play an important role as well. A fuselage structural concept has been developed to exploit the benefit of a metal laminate design concept in terms of high Fatigue and Damage Tolerance (F&DT) performances. The structure used laminated skin (0.8mm thick), bonded stringers, two different splicing solutions and selective reinforcements (glass prepreg embedded in the laminate) under the circumferential frames. To validate the design concept a curved panel was manufactured and tested under loading conditions representative of a single aisle fuselage: cyclic internal pressurization plus longitudinal loads. The geometry of the panel, design and loading conditions were tailored for the requirements of the upper front fuselage. The curved panel has been fatigue tested for 60 000 cycles before the introduction of artificial damages (cracks in longitudinal and circumferential directions). The crack growth of the artificial damages has been investigated for about 85 000 cycles. At the end a residual strength test has been performed with a “2 bay over broken frame” longitudinal crack. The reparability of this innovative concept has been taken into account during design and demonstrated with the use of an external riveted repair. The F&DT curved panel test has confirmed that a long fatigue life and high damage tolerance can be achieved with a hybrid metal laminate low weight configuration. The superior fatigue life from metal laminates and the high damage tolerance characteristics provided by integrated selective reinforcements are the key concepts that provided the excellent performances. The weight comparison between the innovative bonded concept and a conventional monolithic riveted design solution showed a significant potential weight saving but the weight advantages shall be traded off with the additional costs.
Resumo:
The present study is part of the EU Integrated Project “GEHA – Genetics of Healthy Aging” (Franceschi C et al., Ann N Y Acad Sci. 1100: 21-45, 2007), whose aim is to identify genes involved in healthy aging and longevity, which allow individuals to survive to advanced age in good cognitive and physical function and in the absence of major age-related diseases. Aims The major aims of this thesis were the following: 1. to outline the recruitment procedure of 90+ Italian siblings performed by the recruiting units of the University of Bologna (UNIBO) and Rome (ISS). The procedures related to the following items necessary to perform the study were described and commented: identification of the eligible area for recruitment, demographic aspects related to the need of getting census lists of 90+siblings, mail and phone contact with 90+ subjects and their families, bioethics aspects of the whole procedure, standardization of the recruitment methodology and set-up of a detailed flow chart to be followed by the European recruitment centres (obtainment of the informed consent form, anonimization of data by using a special code, how to perform the interview, how to collect the blood, how to enter data in the GEHA Phenotypic Data Base hosted at Odense). 2. to provide an overview of the phenotypic characteristics of 90+ Italian siblings recruited by the recruiting units of the University of Bologna (UNIBO) and Rome (ISS). The following items were addressed: socio-demographic characteristics, health status, cognitive assessment, physical conditions (handgrip strength test, chair-stand test, physical ability including ADL, vision and hearing ability, movement ability and doing light housework), life-style information (smoking and drinking habits) and subjective well-being (attitude towards life). Moreover, haematological parameters collected in the 90+ sibpairs as optional parameters by the Bologna and Rome recruiting units were used for a more comprehensive evaluation of the results obtained using the above mentioned phenotypic characteristics reported in the GEHA questionnaire. 3. to assess 90+ Italian siblings as far as their health/functional status is concerned on the basis of three classification methods proposed in previous studies on centenarians, which are based on: • actual functional capabilities (ADL, SMMSE, visual and hearing abilities) (Gondo et al., J Gerontol. 61A (3): 305-310, 2006); • actual functional capabilities and morbidity (ADL, ability to walk, SMMSE, presence of cancer, ictus, renal failure, anaemia, and liver diseases) (Franceschi et al., Aging Clin Exp Res, 12:77-84, 2000); • retrospectively collected data about past history of morbidity and age of disease onset (hypertension, heart disease, diabetes, stroke, cancer, osteopororis, neurological diseases, chronic obstructive pulmonary disease and ocular diseases) (Evert et al., J Gerontol A Biol Sci Med Sci. 58A (3): 232-237, 2003). Firstly these available models to define the health status of long-living subjects were applied to the sample and, since the classifications by Gondo and Franceschi are both based on the present functional status, they were compared in order to better recognize the healthy aging phenotype and to identify the best group of 90+ subjects out of the entire studied population. 4. to investigate the concordance of health and functional status among 90+ siblings in order to divide sibpairs in three categories: the best (both sibs are in good shape), the worst (both sibs are in bad shape) and an intermediate group (one sib is in good shape and the other is in bad shape). Moreover, the evaluation wanted to discover which variables are concordant among siblings; thus, concordant variables could be considered as familiar variables (determined by the environment or by genetics). 5. to perform a survival analysis by using mortality data at 1st January 2009 from the follow-up as the main outcome and selected functional and clinical parameters as explanatory variables. Methods A total of 765 90+ Italian subjects recruited by UNIBO (549 90+ siblings, belonging to 258 families) and ISS (216 90+ siblings, belonging to 106 families) recruiting units are included in the analysis. Each subject was interviewed according to a standardized questionnaire, comprising extensively utilized questions that have been validated in previous European studies on elderly subjects and covering demographic information, life style, living conditions, cognitive status (SMMSE), mood, health status and anthropometric measurements. Moreover, subjects were asked to perform some physical tests (Hand Grip Strength test and Chair Standing test) and a sample of about 24 mL of blood was collected and then processed according to a common protocol for the preparation and storage of DNA aliquots. Results From the analysis the main findings are the following: - a standardized protocol to assess cognitive status, physical performances and health status of European nonagenarian subjects was set up, in respect to ethical requirements, and it is available as a reference for other studies in this field; - GEHA families are enriched in long-living members and extreme survival, and represent an appropriate model for the identification of genes involved in healthy aging and longevity; - two simplified sets of criteria to classify 90+ sibling according to their health status were proposed, as operational tools for distinguishing healthy from non healthy subjects; - cognitive and functional parameters have a major role in categorizing 90+ siblings for the health status; - parameters such as education and good physical abilities (500 metres walking ability, going up and down the stairs ability, high scores at hand grip and chair stand tests) are associated with a good health status (defined as “cognitive unimpairment and absence of disability”); - male nonagenarians show a more homogeneous phenotype than females, and, though far fewer in number, tend to be healthier than females; - in males the good health status is not protective for survival, confirming the male-female health survival paradox; - survival after age 90 was dependent mainly on intact cognitive status and absence of functional disabilities; - haemoglobin and creatinine levels are both associated with longevity; - the most concordant items among 90+ siblings are related to the functional status, indicating that they contain a familiar component. It is still to be investigated at what level this familiar component is determined by genetics or by environment or by the interaction between genetics, environment and chance (and at what level). Conclusions In conclusion, we could state that this study, in accordance with the main objectives of the whole GEHA project, represents one of the first attempt to identify the biological and non biological determinants of successful/unsuccessful aging and longevity. Here, the analysis was performed on 90+ siblings recruited in Northern and Central Italy and it could be used as a reference for others studies in this field on Italian population. Moreover, it contributed to the definition of “successful” and “unsuccessful” aging and categorising a very large cohort of our most elderly subjects into “successful” and “unsuccessful” groups provided an unrivalled opportunity to detect some of the basic genetic/molecular mechanisms which underpin good health as opposed to chronic disability. Discoveries in the topic of the biological determinants of healthy aging represent a real possibility to identify new markers to be utilized for the identification of subgroups of old European citizens having a higher risk to develop age-related diseases and disabilities and to direct major preventive medicine strategies for the new epidemic of chronic disease in the 21st century.