906 resultados para Sensitivity analysis, Rabbit SAN cell, Mathematical model


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cyclooxygenase-2 (Cox-2) and Apo J/clusterin are involved in inflammatory resolution and have each been reported to inhibit NF-?B signalling. Using a well-validated rat pheochromocytoma (PC12) cell culture model of Cox-2 over-expression the current study investigated inter-dependence between Cox-2 and clusterin with respect to induction of expression and impact on NF-?B signalling. Both gene expression and immunoblot analysis confirmed that intracellular and secreted levels of clusterin were elevated in Cox-2 over-expressing cells (PCXII). Clusterin expression was increased in control (PCMT) cells in a time- and dose-dependent manner by 15-deoxy-? 12,14-prostaglandin J 2 (15d-PGJ 2), but not PGE 2, and inhibited in PCXII cells by pharmacological Cox inhibition. In PCXII cells, inhibition of two transcription factors known to be activated by 15d-PGJ 2, heat shock factor 1 (HSF-1) and peroxisome proliferator activated receptor (PPAR)?, by transcription factor oligonucleotide decoy and antagonist (GW9662) treatment, respectively, reduced clusterin expression. While PCXII cells exhibited reduced TNF-a-induced cell surface ICAM-1 expression, IkB phosphorylation and degradation were similar to control cells. With respect to the impact of Cox-2-dependent clusterin upregulation on NF-?B signalling, basal levels of I?B were similar in control and PCXII cells, and no evidence for a physical association between clusterin and phospho-I?B was obtained. Moreover, while PCXII cells exhibited reduced NF-?B transcriptional activity, this was not restored by clusterin knock-down. These results indicate that Cox-2 induces clusterin in a 15d-PGJ 2-dependent manner, and via activation of HSF-1 and PPAR?. However, the results do not support a model whereby Cox-2/15d-PGJ 2-dependent inhibition of NF-?B signalling involves clusterin.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Inward rectifier potassium channels of the Kir2 subfamily are important determinants of the electrical activity of brain and muscle cells. Genetic mutations in Kir2.1 associate with Andersen-Tawil syndrome (ATS), a familial disorder leading to stress-triggered periodic paralysis and ventricular arrhythmia. To identify the molecular mechanisms of this stress trigger, we analyze Kir channel function and localization electrophysiologically and by time-resolved confocal microscopy. Furthermore, we employ a mathematical model of muscular membrane potential. We identify a novel corticoid signaling pathway that, when activated by glucocorticoids, leads to enrichment of Kir2 channels in the plasma membranes of mammalian cell lines and isolated cardiac and skeletal muscle cells. We further demonstrate that activation of this pathway can either partly restore (40% of cases) or further impair (20% of cases) the function of mutant ATS channels, depending on the particular Kir2.1 mutation. This means that glucocorticoid treatment might either alleviate or deteriorate symptoms of ATS depending on the patient's individual Kir2.1 genotype. Thus, our findings provide a possible explanation for the contradictory effects of glucocorticoid treatment on symptoms in patients with ATS and may open new pathways for the design of personalized medicines in ATS therapy. © FASEB.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Chemotherapy response rates for advanced colorectal cancer remain disappointingly low, primarily because of drug resistance, so there is an urgent need to improve current treatment strategies. To identify novel determinants of resistance to the clinically relevant drugs 5-fluorouracil (5-FU) and SN38 (the active metabolite of irinotecan), transcriptional profiling experiments were carried out on pretreatment metastatic colorectal cancer biopsies and HCT116 parental and chemotherapy-resistant cell line models using a disease-specific DNA microarray. To enrich for potential chemoresistance-determining genes, an unsupervised bioinformatics approach was used, and 50 genes were selected and then functionally assessed using custom-designed short interfering RNA(siRNA) screens. In the primary siRNA screen, silencing of 21 genes sensitized HCT116 cells to either 5-FU or SN38 treatment. Three genes (RAPGEF2, PTRF, and SART1) were selected for further analysis in a panel of 5 colorectal cancer cell lines. Silencing SART1 sensitized all 5 cell lines to 5-FU treatment and 4/5 cell lines to SN38 treatment. However, silencing of RAPGEF2 or PTRF had no significant effect on 5-FU or SN38 sensitivity in the wider cell line panel. Further functional analysis of SART1 showed that its silencing induced apoptosis that was caspase-8 dependent. Furthermore, silencing of SART1 led to a downregulation of the caspase-8 inhibitor, c-FLIP, which we have previously shown is a key determinant of drug resistance in colorectal cancer. This study shows the power of systems biology approaches for identifying novel genes that regulate drug resistance and identifies SART1 as a previously unidentified regulator of c-FLIP and drug-induced activation of caspase-8. Mol Cancer Ther; 11(1); 119-31. (C) 2011 AACR.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mounting accuracy of satellite payload and ADCS (attitude determination and control subsystem) seats is one of the requirements to achieve the satellite mission with acceptable performance. Components of mounting inaccuracy are technological inaccuracies, residual plastic deformations after loading (during transportation and orbital insertion), elastic deformations, and thermal deformations during orbital operation. This paper focuses on estimation of thermal deformations of satellite structure. Thermal analysis is executed by applying finite-difference method (IDEAS) and temperature profile for satellite components case is evaluated. Then, Perform thermal finite-element analysis applying the finite-difference model results as boundary conditions; and calculate the resultant thermal strain. Next, applying the resultant thermal strain, perform finite-element structure analysis to evaluate structure deformations at the payload and ADCS equipments seats.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Although coordinated patterns of body movement can be used to communicate action intention, they can also be used to deceive. Often known as deceptive movements, these unpredictable patterns of body movement can give a competitive advantage to an attacker when trying to outwit a defender. In this particular study, we immersed novice and expert rugby players in an interactive virtual rugby environment to understand how the dynamics of deceptive body movement influence a defending player’s decisions about how and when to act. When asked to judge final running direction, expert players who were found to tune into prospective tau-based information specified in the dynamics of ‘honest’ movement signals (Centre of Mass), performed significantly better than novices who tuned into the dynamics of ‘deceptive’ movement signals (upper trunk yaw and out-foot placement) (p<.001). These findings were further corroborated in a second experiment where players were able to move as if to intercept or ‘tackle’ the virtual attacker. An analysis of action responses showed that experts waited significantly longer before initiating movement (p<.001). By waiting longer and picking up more information that would inform about future running direction these experts made significantly fewer errors (p<.05). In this paper we not only present a mathematical model that describes how deception in body-based movement is detected, but we also show how perceptual expertise is manifested in action expertise. We conclude that being able to tune into the ‘honest’ information specifying true running action intention gives a strong competitive advantage.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Our recent study reported that conformation change of granule-associated Bovine Serum Albumin (BSA) may influence the role of the protein controlling colloid deposition in porous media (Flynn et al., 2012). The present study conceptualized the observed phenomena with an ellipsoid morphology model, describing BSA as an ellipsoid taking a side-on or end-on conformation on granular surface, and identified the following processes: (1) at low adsorbed concentrations, BSA exhibited a side-on conformation blocking colloid deposition; (2) at high adsorbed concentrations, BSA adapted to an end-on conformation promoted colloid deposition; and (3) colloid deposition on the BSA layer may progressively generate end-on molecules (sites) by conformation change of side-on BSA, resulting in sustained increasing deposition rates. Generally, the protein layer lowered colloid attenuation by the porous medium, suggesting the overall effect of BSA was inhibitory at the experimental time scale. A mathematical model was developed to interpret the ripening curves. Modeling analysis identified the site generation efficiency of colloid as a control on the ripening rate (declining rate in colloid concentrations), and this efficiency was higher for BSA adsorbed from a more dilute BSA solution. © 2012 Elsevier B.V.