979 resultados para Self-dual codes
Synthesis, structure, and magnetic studies on self-assembled BiFeO3-CoFe2O4 nanocomposite thin films
Resumo:
Self-assembled (0.65)BiFeO3-(0.35)CoFe2O4 (BFO-CFO) nanostructures were deposited on SrTiO3 (001) and (111) substrates by pulsed laser deposition at various temperatures from 500 to 800°C. The crystal phases and the lattice strain for the two different substrate orientations have been determined and compared. The films grow epitaxial on both substrates but separation of the spinel and perovskite crystallites, without parasitic phases, is only obtained for growth temperatures of around 600-650°C. The BFO crystallites are out-of-plane expanded on STO(001), whereas they are almost relaxed on (111). In contrast, CFO crystallites grow out-of-plane compressed on both substrates. The asymmetric behavior of the cell parameters of CFO and BFO is discussed on the basis of the role of the epitaxial stress caused by the substrate and the spinel-perovskite interfacial stress. It is concluded that interfacial stress dominates the elastic properties of CFO crystallites and thus it may play a fundamental on the interface magnetoelectric coupling in these nanocomposites.
Resumo:
BACKGROUND: The aim of this study was to explore the predictive value of longitudinal self-reported adherence data on viral rebound. METHODS: Individuals in the Swiss HIV Cohort Study on combined antiretroviral therapy (cART) with RNA <50 copies/ml over the previous 3 months and who were interviewed about adherence at least once prior to 1 March 2007 were eligible. Adherence was defined in terms of missed doses of cART (0, 1, 2 or >2) in the previous 28 days. Viral rebound was defined as RNA >500 copies/ml. Cox regression models with time-independent and -dependent covariates were used to evaluate time to viral rebound. RESULTS: A total of 2,664 individuals and 15,530 visits were included. Across all visits, missing doses were reported as follows: 1 dose 14.7%, 2 doses 5.1%, >2 doses 3.8% taking <95% of doses 4.5% and missing > or =2 consecutive doses 3.2%. In total, 308 (11.6%) patients experienced viral rebound. After controlling for confounding variables, self-reported non-adherence remained significantly associated with the rate of occurrence of viral rebound (compared with zero missed doses: 1 dose, hazard ratio [HR] 1.03, 95% confidence interval [CI] 0.72-1.48; 2 doses, HR 2.17, 95% CI 1.46-3.25; >2 doses, HR 3.66, 95% CI 2.50-5.34). Several variables significantly associated with an increased risk of viral rebound irrespective of adherence were identified: being on a protease inhibitor or triple nucleoside regimen (compared with a non-nucleoside reverse transcriptase inhibitor), >5 previous cART regimens, seeing a less-experienced physician, taking co-medication, and a shorter time virally suppressed. CONCLUSIONS: A simple self-report adherence questionnaire repeatedly administered provides a sensitive measure of non-adherence that predicts viral rebound.
Resumo:
The synthesis of magnetic nanoparticles with monodispere size distributions, their self assembly into ordered arrays and their magnetic behavior as a function of structural order (ferrofluids and 2D assemblies) are presented. Magnetic colloids of monodispersed, passivated, cobalt nanocrystals were produced by the rapid pyrolysis of cobalt carbonyl in solution. The size, size distribution (std. dev.< 5%) and the shape of the nanocrystals were controlled by varying the surfactant, its concentration, the reaction rate and the reaction temperature. The Co particles are defect-free single crystals with a complex cubic structure related to the beta phase of manganese (epsilon-Co). In the 2D assembly, a collective behavior was observed in the low-field susceptibility measurements where the magnetization of the zero field cooled process increases steadily and the magnetization of the field cooling process is independent the temperature. This was different from the observed behavior in a sample comprised of disordered interacting particles. A strong paramagnetic contribution appears at very low temperatures where the magnetization increases drastically after field cooling the sample. This has been attributed to the Co surfactant-particle interface since no magnetic atomic impurities are present in these samples.
Resumo:
Abstract This thesis presents three empirical studies in the field of health insurance in Switzerland. First we investigate the link between health insurance coverage and health care expenditures. We use claims data for over 60 000 adult individuals covered by a major Swiss Health Insurance Fund, followed for four years; the data show a strong positive correlation between coverage and expenditures. Two methods are developed and estimated in order to separate selection effects (due to individual choice of coverage) and incentive effects ("ex post moral hazard"). The first method uses the comparison between inpatient and outpatient expenditures to identify both effects and we conclude that both selection and incentive effects are significantly present in our data. The second method is based on a structural model of joint demand of health care and health insurance and makes the most of the change in the marginal cost of health care to identify selection and incentive effects. We conclude that the correlation between insurance coverage and health care expenditures may be decomposed into the two effects: 75% may be attributed to selection, and 25 % to incentive effects. Moreover, we estimate that a decrease in the coinsurance rate from 100% to 10% increases the marginal demand for health care by about 90% and from 100% to 0% by about 150%. Secondly, having shown that selection and incentive effects exist in the Swiss health insurance market, we present the consequence of this result in the context of risk adjustment. We show that if individuals choose their insurance coverage in function of their health status (selection effect), the optimal compensations should be function of the se- lection and incentive effects. Therefore, a risk adjustment mechanism which ignores these effects, as it is the case presently in Switzerland, will miss his main goal to eliminate incentives for sickness funds to select risks. Using a simplified model, we show that the optimal compensations have to take into account the distribution of risks through the insurance plans in case of self-selection in order to avoid incentives to select risks.Then, we apply our propositions to Swiss data and propose a simple econometric procedure to control for self-selection in the estimation of the risk adjustment formula in order to compute the optimal compensations.
Resumo:
Tumor progression is facilitated by regulatory T cells (Treg) and restricted by effector T cells. In this study, we document parallel regulation of CD8(+) T cells and Foxp3(+) Tregs by programmed death-1 (PD-1, PDCD1). In addition, we identify an additional role of CTL antigen-4 (CTLA-4) inhibitory receptor in further promoting dysfunction of CD8(+) T effector cells in tumor models (CT26 colon carcinoma and ID8-VEGF ovarian carcinoma). Two thirds of CD8(+) tumor-infiltrating lymphocytes (TIL) expressed PD-1, whereas one third to half of CD8(+) TIL coexpressed PD-1 and CTLA-4. Double-positive (PD-1(+)CTLA-4(+)) CD8(+) TIL had characteristics of more severe dysfunction than single-positive (PD-1(+) or CTLA-4(+)) TIL, including an inability to proliferate and secrete effector cytokines. Blockade of both PD-1 and CTLA-4 resulted in reversal of CD8(+) TIL dysfunction and led to tumor rejection in two thirds of mice. Double blockade was associated with increased proliferation of antigen-specific effector CD8(+) and CD4(+) T cells, antigen-specific cytokine release, inhibition of suppressive functions of Tregs, and upregulation of key signaling molecules critical for T-cell function. When used in combination with GVAX vaccination (consisting of granulocyte macrophage colony-stimulating factor-expressing irradiated tumor cells), inhibitory pathway blockade induced rejection of CT26 tumors in 100% of mice and ID8-VEGF tumors in 75% of mice. Our study indicates that PD-1 signaling in tumors is required for both suppressing effector T cells and maintaining tumor Tregs, and that PD-1/PD-L1 pathway (CD274) blockade augments tumor inhibition by increasing effector T-cell activity, thereby attenuating Treg suppression. Cancer Res; 73(12); 3591-603. ©2013 AACR.
Resumo:
Peripheral assessment of bone density using photon absorptiometry techniques has been available for over 40 yr. The initial use of radio-isotopes as the photon source has been replaced by the use of X-ray technology. A wide variety of models of single- or dual-energy X-ray measurement tools have been made available for purchase, although not all are still commercially available. The Official Positions of the International Society for Clinical Densitometry (ISCD) have been developed following a systematic review of the literature by an ISCD task force and a subsequent Position Development Conference. These cover the technological diversity among peripheral dual-energy X-ray absorptiometry (pDXA) devices; define whether pDXA can be used for fracture risk assessment and/or to diagnose osteoporosis; examine whether pDXA can be used to initiate treatment and/or monitor treatment; provide recommendations for pDXA reporting; and review quality assurance and quality control necessary for effective use of pDXA.
Resumo:
We study the sensitivity limits of a broadband gravitational-wave detector based on dual resonators such as nested spheres. We determine both the thermal and back-action noises when the resonators displacements are read out with an optomechanical sensor. We analyze the contributions of all mechanical modes, using a new method to deal with the force-displacement transfer functions in the intermediate frequency domain between the two gravitational-wave sensitive modes associated with each resonator. This method gives an accurate estimate of the mechanical response, together with an evaluation of the estimate error. We show that very high sensitivities can be reached on a wide frequency band for realistic parameters in the case of a dual-sphere detector.
Resumo:
We have studied the collective behavior of a population of integrate-and-fire oscillators. We show that diversity, introduced in terms of a random distribution of natural periods, is the mechanism that permits one to observe self-organized criticality (SOC) in the long time regime. As diversity increases the system undergoes several transitions from a supercritical regime to a subcritical one, crossing the SOC region. Although there are resemblances with percolation, we give proofs that criticality takes place for a wide range of values of the control parameter instead of a single value.
Resumo:
We present the concept of a sensitive and broadband resonant mass gravitational wave detector. A massive sphere is suspended inside a second hollow one. Short, high-finesse Fabry-Perot optical cavities read out the differential displacements of the two spheres as their quadrupole modes are excited. At cryogenic temperatures, one approaches the standard quantum limit for broadband operation with reasonable choices for the cavity finesses and the intracavity light power. A molybdenum detector, of overall size of 2 m, would reach spectral strain sensitivities of 2x10-23Hz-1/2 between 1000 and 3000 Hz.
Resumo:
We show that the statistics of an edge type variable in natural images exhibits self-similarity properties which resemble those of local energy dissipation in turbulent flows. Our results show that self-similarity and extended self-similarity hold remarkably for the statistics of the local edge variance, and that the very same models can be used to predict all of the associated exponents. These results suggest using natural images as a laboratory for testing more elaborate scaling models of interest for the statistical description of turbulent flows. The properties we have exhibited are relevant for the modeling of the early visual system: They should be included in models designed for the prediction of receptive fields.
Resumo:
We present a continuous time random walk model for the scale-invariant transport found in a self-organized critical rice pile [K. Christensen et al., Phys. Rev. Lett. 77, 107 (1996)]. From our analytical results it is shown that the dynamics of the experiment can be explained in terms of Lvy flights for the grains and a long-tailed distribution of trapping times. Scaling relations for the exponents of these distributions are obtained. The predicted microscopic behavior is confirmed by means of a cellular automaton model.
Resumo:
The protein shells, or capsids, of nearly all spherelike viruses adopt icosahedral symmetry. In the present Letter, we propose a statistical thermodynamic model for viral self-assembly. We find that icosahedral symmetry is not expected for viral capsids constructed from structurally identical protein subunits and that this symmetry requires (at least) two internal switching configurations of the protein. Our results indicate that icosahedral symmetry is not a generic consequence of free energy minimization but requires optimization of internal structural parameters of the capsid proteins
Resumo:
We demonstrate that the self-similarity of some scale-free networks with respect to a simple degree-thresholding renormalization scheme finds a natural interpretation in the assumption that network nodes exist in hidden metric spaces. Clustering, i.e., cycles of length three, plays a crucial role in this framework as a topological reflection of the triangle inequality in the hidden geometry. We prove that a class of hidden variable models with underlying metric spaces are able to accurately reproduce the self-similarity properties that we measured in the real networks. Our findings indicate that hidden geometries underlying these real networks are a plausible explanation for their observed topologies and, in particular, for their self-similarity with respect to the degree-based renormalization.
Resumo:
We introduce two coupled map lattice models with nonconservative interactions and a continuous nonlinear driving. Depending on both the degree of conservation and the convexity of the driving we find different behaviors, ranging from self-organized criticality, in the sense that the distribution of events (avalanches) obeys a power law, to a macroscopic synchronization of the population of oscillators, with avalanches of the size of the system.