932 resultados para Seasonal anestrus
Resumo:
This study was conducted in the Private Reserve Mata do Jambreiro (912 ha), localized in the Iron Quadrangle, Minas Gerais, southeastern portion of the Espinhaco Range, which is predominantly covered by semideciduous seasonal montane forest. Three topographically and physiognomic similar areas located within a continuum forest fragment, distant by 1.3 to 1.5 km were sampled by the point-quadrat method. In each area, 30 points were marked. Individuals with a minimum perimeter at the breast height (PBH) of 15 cm were sampled, totaling 111 species belonging to 40 families. The most representative family was Fabaceae, with 14.29% of the total number of species. Low floristic similarity (5.3% to 34.4%) was observed between the areas, pointing out the importance of distribution of sample units in continuous fragments. Shannon diversity index (H') found was 4.22 and Pielou equability (J) 0.894. Soil analysis showed some differences in chemical composition between the three studied areas and was an important component for the interpretation of the floristic variation found. The low floristic similarity observed here for close areas justify the requirement of more detailed inventories by Brazilian Environmental Agencies for the legal authorization procedures prior to the establishment of new enterprising projects. Also, the professionals that conduct rapid inventories, mainly the Environmental Consultants, should give more attention to this kind of floristic variation and to the methods used to inventory complex forests.
Resumo:
Vertical number fluxes of aerosol particles and vertical fluxes of CO(2) were measured with the eddy covariance method at the top of a 53 m high tower in the Amazon rain forest as part of the LBA (The Large Scale Biosphere Atmosphere Experiment in Amazonia) experiment. The observed aerosol number fluxes included particles with sizes down to 10 nm in diameter. The measurements were carried out during the wet and dry season in 2008. In this study focus is on the dry season aerosol fluxes, with significant influence from biomass burning, and these are compared with aerosol fluxes measured during the wet season. Net particle deposition fluxes dominated in daytime in both seasons and the deposition flux was considerably larger in the dry season due to the much higher dry season particle concentration. The particle transfer velocity increased linearly with increasing friction velocity in both seasons. The difference in transfer velocity between the two seasons was small, indicating that the seasonal change in aerosol number size distribution is not enough for causing any significant change in deposition velocity. In general, particle transfer velocities in this study are low compared to studies over boreal forests. The reasons are probably the high percentage of accumulation mode particles and the low percentage of nucleation mode particles in the Amazon boundary layer, both in the dry and wet season, and low wind speeds in the tropics compared to the midlatitudes. In the dry season, nocturnal particle fluxes behaved very similar to the nocturnal CO(2) fluxes. Throughout the night, the measured particle flux at the top of the tower was close to zero, but early in the morning there was an upward particle flux peak that is not likely a result of entrainment or local pollution. It is possible that these morning upward particle fluxes are associated with emission of primary biogenic particles from the rain forest. Emitted particles may be stored within the canopy during stable conditions at nighttime, similarly to CO(2), and being released from the canopy when conditions become more turbulent in the morning.
Resumo:
Measurements of polar organic marker compounds were performed on aerosols that were collected at a pasture site in the Amazon basin (Rondonia, Brazil) using a high-volume dichotomous sampler (HVDS) and a Micro-Orifice Uniform Deposit Impactor (MOUDI) within the framework of the 2002 LBA-SMOCC (Large-Scale Biosphere Atmosphere Experiment in Amazonia - Smoke Aerosols, Clouds, Rainfall, and Climate: Aerosols From Biomass Burning Perturb Global and Regional Climate) campaign. The campaign spanned the late dry season (biomass burning), a transition period, and the onset of the wet season (clean conditions). In the present study a more detailed discussion is presented compared to previous reports on the behavior of selected polar marker compounds, including levoglucosan, malic acid, isoprene secondary organic aerosol (SOA) tracers and tracers for fungal spores. The tracer data are discussed taking into account new insights that recently became available into their stability and/or aerosol formation processes. During all three periods, levoglucosan was the most dominant identified organic species in the PM(2.5) size fraction of the HVDS samples. In the dry period levoglucosan reached concentrations of up to 7.5 mu g m(-3) and exhibited diel variations with a nighttime prevalence. It was closely associated with the PM mass in the size-segregated samples and was mainly present in the fine mode, except during the wet period where it peaked in the coarse mode. Isoprene SOA tracers showed an average concentration of 250 ng m(-3) during the dry period versus 157 ng m(-3) during the transition period and 52 ng m(-3) during the wet period. Malic acid and the 2-methyltetrols exhibited a different size distribution pattern, which is consistent with different aerosol formation processes (i.e., gas-to-particle partitioning in the case of malic acid and heterogeneous formation from gas-phase precursors in the case of the 2-methyltetrols). The 2-methyltetrols were mainly associated with the fine mode during all periods, while malic acid was prevalent in the fine mode only during the dry and transition periods, and dominant in the coarse mode during the wet period. The sum of the fungal spore tracers arabitol, mannitol, and erythritol in the PM(2.5) fraction of the HVDS samples during the dry, transition, and wet periods was, on average, 54 ng m(-3), 34 ng m(-3), and 27 ng m(-3), respectively, and revealed minor day/night variation. The mass size distributions of arabitol and mannitol during all periods showed similar patterns and an association with the coarse mode, consistent with their primary origin. The results show that even under the heavy smoke conditions of the dry period a natural background with contributions from bioaerosols and isoprene SOA can be revealed. The enhancement in isoprene SOA in the dry season is mainly attributed to an increased acidity of the aerosols, increased NO(x) concentrations and a decreased wet deposition.
Resumo:
The temperature of the upper atmosphere affects the height of primary cosmic ray interactions and the production of high-energy cosmic ray muons which can be detected deep underground. The MINOS far detector at Soudan, MN, has collected over 67 X 10(6) cosmic ray induced muons. The underground muon rate measured over a period of five years exhibits a 4% peak-to-peak seasonal variation which is highly correlated with the temperature in the upper atmosphere. The coefficient, alpha(T), relating changes in the muon rate to changes in atmospheric temperature was found to be alpha(T) 0: 873 +/- 0: 009(stat) +/- 0.010(syst). Pions and kaons in the primary hadronic interactions of cosmic rays in the atmosphere contribute differently to alpha(T) due to the different masses and lifetimes. This allows the measured value of alpha(T) to be interpreted as a measurement of the K/pi ratio for E(p) greater than or similar to 7 TeV of 0.12(-0.05)(+0.07), consistent with the expectation from collider experiments.
Resumo:
We studied copepod assemblage variability among years, seasons, and tidal states in the Mucuri River estuary (Bahia State, Brazil). Zooplankton samples were collected seasonally through five years (2002-2006) at three sampling stations, one of which was sampled over a complete tidal cycle (two ebb and two flood tides). Temperature, salinity, river flux, and rainfall data were collected. Winter and summer represented dry and wet seasons, respectively. Copepod abundances ranged from 40 to 63% of the total zooplankton assemblage and comprised 46 taxa, among which, common estuarine species such as Temora turbinata (first record for the studied area), Parvocalanus crassirostris, Acartia lilljeborgi, Oithona hebes were the most abundant (euryhaline species). Interannual and seasonal variations were most marked in stenohaline species, e.g.. Notodiaptomus sp. and Thermocyclops minutus; density variations of euryhaline species, which made up the majority of the abundant taxa, were most closely related to tides. Diversity and richness also followed an intertidal pattern of variation.
Resumo:
This paper reports manganese (Mn) fractionation in samples collected from the water column and sediments in an environmental protection area in the Alto do Paranapanema Basin (Sao Paulo State, Brazil). The three locations studied showed equivalent Mn levels, with moderate seasonal differences (p < 0.05). The sediment samples contained five Mn species (p < 0.05): iron and manganese (hydr)oxides > Mn bound to carbonates approximate to exchangeable Mn approximate to Mn bound to silicates > Mn bound to organic matter (p < 0.05). The water samples contained three species (p < 0.05): particulate Mn > labile Mn approximate to non-labile Mn. The data suggest that Mn has a natural origin (Enrichment Factor EF < 2; Geoaccumulation Index I(geo) < 0) and moderate environmental risk (Risk Assessment Code RAC similar to 30%). At the same time, under certain conditions some manganese species could be present in a state of equilibrium between the water column and sediment. These results could provide a basis for Mn management in the Alto do Paranapanema Basin.
Resumo:
Large-scale soy agriculture in the southern Brazilian Amazon now rivals deforestation for pasture as the region`s predominant form of land use change. Such landscape-level change can have substantial consequences for local and regional hydrology, but these effects remain relatively unstudied in this ecologically and economically important region. We examined how the conversion to soy agriculture influences water balances and stormflows using stream discharge (water yields) and the timing of discharge (stream hydrographs) in small (2.5-13.5 km2) forested and soy headwater watersheds in the Upper Xingu Watershed in the state of Mato Grosso, Brazil. We monitored water yield for 1 year in three forested and four soy watersheds. Mean daily water yields were approximately four times higher in soy than forested watersheds, and soy watersheds showed greater seasonal variability in discharge. The contribution of stormflows to annual streamflow in all streams was low (< 13% of annual streamflow), and the contribution of stormflow to streamflow did not differ between land uses. If the increases in water yield observed in this study are typical, landscape-scale conversion to soy substantially alters water-balance, potentially altering the regional hydrology over large areas of the southern Amazon.
Resumo:
The introduction of crop management practices after conversion of Amazon Cerrado into cropland influences soil C stocks and has direct and indirect consequences on greenhouse gases (GHG) emissions. The aim of this study was to quantify soil C sequestration, through the evaluation of the changes in C stocks, as well as the GHG fluxes (N(2)O and CH(4)) during the process of conversion of Cerrado into agricultural land in the southwestern Amazon region, comparing no-tillage (NT) and conventional tillage (CT) systems. We collected samples from soils and made gas flux measurements in July 2004 (the dry season) and in January 2005 (the wet season) at six areas: Cerrado, CT cultivated with rice for 1 year (1CT) and 2 years (2CT), and NT cultivated with soybean for 1 year (1NT), 2 years (2NT) and 3 years (3NT), in each case after a 2-year period of rice under CT. Soil samples were analyzed in both seasons for total organic C and bulk density. The soil C stocks, corrected for a mass of soil equivalent to the 0-30-cm layer under Cerrado, indicated that soils under NT had generally higher C storage compared to native Cerrado and CT soils. The annual C accumulation rate in the conversion of rice under CT into soybean under NT was 0.38 Mg ha(-1) year(-1). Although CO(2) emissions were not used in the C sequestration estimates to avoid double counting, we did include the fluxes of this gas in our discussion. In the wet season, CO(2) emissions were twice as high as in the dry season and the highest N(2)O emissions occurred under the NT system. There were no CH(4) emissions to the atmosphere (negative fluxes) and there were no significant seasonal variations. When N(2)O and CH(4) emissions in C-equivalent were subtracted (assuming that the measurements made on 4 days were representative of the whole year), the soil C sequestration rate of the conversion of rice under CT into soybean under NT was 0.23 Mg ha(-1) year(-1). Although there were positive soil C sequestration rates, our results do not present data regarding the full C balance in soil management changes in the Amazon Cerrado. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
The main objective of this study was to evaluate dissolved organic and inorganic carbon dynamics along upstream and downstream reaches of the Acre River draining the city of Rio Branco, in the state of Acre, Brazil. Dissolved organic carbon (DOC) concentrations in the Acre River were significantly higher during the wet season, ranging from 385 +/- A 160 to 430 +/- A 131 mu M among the stations, with no difference in upstream and downstream concentrations. Dissolved inorganic carbon (DIC) showed an inverse pattern, with higher concentrations in the dry season, ranging from 816 +/- A 215 to 998 +/- A 754 mu M among the stations, as well as no difference in upstream and downstream DIC concentrations. Bicarbonate was the dominant DIC fraction and was mainly observed during the dry season. Due to lower pH values during the wet season, CO(2) partial pressure (pCO(2)) in the Acre River was higher in the wet season, with values ranging from 4,567 +/- A 1,813 to 4,893 +/- A 837 ppm among the stations. Our results indicate that, although the Acre River drains a large city with significant sewage disposal into the river, seasonal hydrological processes are the main driver of dissolved carbon dynamics, even in the downstream study reach directly influenced by urbanization.
Resumo:
The brief interaction of precipitation with a forest canopy can create a high spatial variability of both throughfall and solute deposition. We hypothesized that (i) the variability in natural forest systems is high but depends on system-inherent stability, (ii) the spatial variability of solute deposition shows seasonal dynamics depending on the increase in rainfall frequency, and (iii) spatial patterns persist only in the short-term. The study area in the north-western Brazilian state of Rondonia is subject to a climate with a distinct wet and dry season. We collected rain and throughfall on an event basis during the early wet season (n = 14) and peak of the wet season (n = 14) and analyzed the samples for pH and concentrations of NH4+, Na+, K+, Ca2+ Mg2+,, Cl-, NO3-, SO42- and DOC. The coefficient 3 4 cient of variation for throughfall based on both sampling intervals was 29%, which is at the lower end of values reported from other tropical forest sites, but which is higher than in most temperate forests. Coefficients of variation of solute deposition ranged from 29% to 52%. This heterogeneity of solute deposition is neither particularly high nor particularly tow compared with a range of tropical and temperate forest ecosystems. We observed an increase in solute deposition variability with the progressing wet season, which was explained by a negative correlation between heterogeneity of solute deposition and antecedent dry period. The temporal stability of throughfall. patterns was Low during the early wet season, but gained in stability as the wet season progressed. We suggest that rapid plant growth at the beginning of the rainy season is responsible for the lower stability, whereas less vegetative activity during the later rainy season might favor the higher persistence of ""hot"" and ""cold"" spots of throughfall. quantities. The relatively high stability of throughfall patterns during later stages of the wet season may influence processes at the forest floor and in the soil. Solute deposition patterns showed less clear trends but all patterns displayed a short-term stability only. The weak stability of those patterns is apt to impede the formation of solute deposition -induced biochemical microhabitats in the soil. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Concentrations of cations (Na(+), Ca(2+), Mg(2+), K(+), NH(4) (+)), anions (HCO(3) (-), Cl(-), NO(3) (-), SO(4) (2-), PO(4) (3-)) and suspended sediments in the Madeira River water were determined near the city of Porto Velho (RO), in order to assess variation in water chemistry from 2004 to 2007. Calcium and bicarbonate were the dominant cation and anion, respectively. Significant seasonal differences were found, with highest concentrations occurring during the dry season, as expected from the drainage of Andean carbonate-rich substratum. Interannual variations were also observed, but became significant only when annual average discharge was 25% less than normal. Under this atypical discharge condition, bicarbonate was replaced by sulfate, and higher suspended sediment concentrations and loads were also observed. Compared to previously published studies, it appears that no significant changes in water chemistry have occurred during the last 20-30 years, although differences in approaches and sampling designs among this and previous studies may not allow detection of modest changes. The calculated suspended sediment load reported here is close to the values presented elsewhere, reinforcing the relative importance of this river as a sediment supplier for the Amazon Basin. Seasonality has a significant control on the chemistry of Madeira River waters, and severe decrease in discharge due to anthropogenic changes, such as construction of reservoirs or the occurrence of drier years-a plausible consequence of global climate change-may lead to modification in the chemical composition as well in the sediment deliver to the Amazon River.
Resumo:
Question: How can the coexistence of savanna and forest in Amazonian areas with relatively uniform climates be explained? Location: Eastern Marajo Island, northeast Amazonia, Brazil. Methods: The study integrated floristic analysis, terrain morphology, sedimentology and delta(13)C of soil organic matter. Floristic analysis involved rapid ecological assessment of 33 sites, determination of occurrence, specific richness, hierarchical distribution and matrix of floristic similarity between paired vegetation types. Terrain characterization was based on analysis of Landsat images using 4(R), 5(G) and 7(B) composition and digital elevation model (DEM). Sedimentology involved field descriptions of surface and core sediments. Finally, radiocarbon dating and analysis of delta(13)C of soil profile organic matter and natural ecotone forest-savanna was undertaken. Results: Slight tectonic subsidence in eastern Marajo Island favours seasonal flooding, making it unsuitable for forest growth. However, this area displays slightly convex-up, sinuous morphologies related to paleochannels, covered by forest. Terra-firme lowland forests are expanding from west to east, preferentially occupying paleochannels and replacing savanna. Slack, running water during channel abandonment leads to disappearance of varzea/gallery forest at channel margins. Long-abandoned channels sustain continuous terra-firme forests, because of longer times for more species to establish. Recently abandoned channels have had less time to become sites for widespread tree development, and are either not vegetated or covered by savanna. Conclusion: Landforms in eastern Marajo Island reflect changes in the physical environment due to reactivation of tectonic faults during the latest Quaternary. This promoted a dynamic history of channel abandonment, which controlled a set of interrelated parameters (soil type, topography, hydrology) that determined species location. Inclusion of a geological perspective for paleoenvironmental reconstruction can increase understanding of plant distribution in Amazonia.
Resumo:
Background: Few studies have evaluated seasonal variations of biochemical parameters routinely analyzed in clinical laboratories. Rhythmic patterns for lipids and lipoproteins have been demonstrated and have been the object of research, mainly because of their demonstrated association with coronary artery disease. This study evaluated the occurrence of biological rhythms on serum lipids and lipoproteins and the effects of sex and age on the rhythms in a Brazilian hospital outpatient population. Methods: Retrospective laboratory study was carried out to evaluate the results of total cholesterol (TC), HDL-cholesterol (HDL-C), LDL-cholesterol (LDL-C) and triglycerides (TG), from individuals registered at a university referral hospital over 8years. The studied population was composed of individuals of both sexes and all ages totaling 38,579 participants and 301,934 measurements. Statistical analyses were carried out using the SAS program and the temporal analysis used the Cosinor method. Results: TG rhythm was present only in females. All other parameters were equally rhythmic in both sexes. Regarding age, HDL-C presented rhythms in all age groups, but TC and LDL-C showed seasonality only for those > 13years, TG did not present rhythms in all age groups. Conclusion: Effects of sex and age on biological rhythms detected in TC, LDL-C and HDL-C should be considered a significant cause of pre-analytical variation in these laboratory tests. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
The Brazilian Atlantic Rainforest is internationally recognised as one of the most biodiverse and threatened tropical forests in the world [Myers, N., Mittermeier, R.A., Mittermeier, C.G., da Fonseca, G.A.B., Kent, J., 2000. Biodiversity hotspots for conservation priorities. Nature 403, 853-858]. The Seasonal Semi-Deciduous Forest is among the most fragmented and threatened biomes of the Atlantic Rainforest Domain. The largest remnant of this biome (35,000 ha) is protected by the Morro do Diabo State Park (MDSP), situated in the area known as the Pontal do Paranapanema, in Sao Paulo State, Brazil. Despite its environmental importance, the park is under political, economic and demographic pressure. The main aim of our research was to estimate the population`s willingness to pay (WTP) for the conservation of MDSP and for the Atlantic Rainforest`s remnants in Sao Paulo State as a whole, by means of the contingent valuation method (CVM). The results featured a high incidence of null WTP and of protest votes. Nevertheless, the population is willing to pay US$ 2,113,548.00/year (R$ 7,080,385.00/year) for the conservation of the MDSP (use and existence values), or US$ 60.39 ha/year (R$ 202.30/ha/year). The results indicate that the preservation value is strongly associated to the population`s ability to pay, increasing with income levels. Qualitative research questions showed that the population considers protected areas to be very important. Still, the valuation of MDSP revealed a gap between the government budget allotted to the park and the value assigned to the area by the public. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
Aims: To investigate the effects of a 6-month supplementation with calcium and cholecalciferol on biochemical parameters and muscle strength of institutionalized elderly. Methods: This prospective, double-blind, placebo-controlled, randomized trial included Brazilian institutionalized people 6 60 years of age receiving a 6-month supplementation ( December to May) of daily calcium plus monthly placebo (calcium/placebo group) or daily calcium plus oral cholecalciferol (150,000 IU once a month during the first 2 months, followed by 90,000 IU once a month for the last 4 months; calcium/vitamin D group). Fasting blood samples for 25-(OH) D, PTH and calcium determination were collected (n = 56) and muscle tests were performed ( n = 46) to measure the strength of hip flexors (SHF) and knee extensors (SKE) before ( baseline) and after the 6-month intervention ( 6 months). Results: Due to seasonal variations, serum 25( OH) D significantly enhanced in both groups after treatment, but the calcium/vitamin D group had significantly higher 25-(OH) D levels than the calcium/placebo group (84 vs. 33%, respectively; p < 0.0001). No cases of hypercalcemia were observed. While the calcium/placebo group showed no improvement in SHF and SKE at 6 months (p = 0.93 and p = 0.61, respectively), SHF was increased in the calcium/vitamin D group by 16.4% (p = 0.0001) and SKE by 24.6% (p = 0.0007). Conclusions: The suggested cholecalciferol supplementation was safe and efficient in enhancing 25(OH)D levels and lower limb muscle strength in the elderly, in the absence of any regular physical exercise practice. Copyright (C) 2009 S. Karger AG, Basel