908 resultados para Scenic Sites
Resumo:
Paleontological studies conducted subsequent to the completion of Leg 133 led to refinements of the biostratigraphy for the Leg 133 sites. These biostratigraphic refinements bear on the calculations of sedimentation rates and on the age-depth plots prepared for the Initial Reports volume for Leg 133. To make available the revised data to anyone who may wish to make use of it, the revised biostratigraphic information is presented here in tabulated form. Revised age-depth plots also are presented for all of the sites to facilitate comparison of sedimentation rate curves and to identify intervals where significant changes have been made based on post-cruise studies. The revised age-depth plots include calcareous nannofossils only, and the revised data have been taken from thechapters contributed for this volume (Gartner et al., 1993, doi:10.2973/odp.proc.sr.133.213.1993; Wei and Gartner, 1993, doi:10.2973/odp.proc.sr.133.216.1993). Planktonic foraminifer biostratigraphy revisions became available subsequently and could not be readily incorporated. The age-depth plots for Sites 812 through 818 were made with the (ADP) program provided to ODP by Dave Lazarus.
Resumo:
The quantity and quality of organic carbon of Eocene to Holocene sediments from ODP Sites 645, 646, and 647 were investigated to reconstruct depositional environments. Results were based on organic-carbon and nitrogen determinations, Rock-Eval pyrolysis, and kerogen microscopy. The sediments at Site 645 in Baffin Bay are characterized by relatively high organic-carbon values, most of which range from 0.5% to almost 3%, with maximum values in the middle Miocene. Distinct maxima of organic-carbon accumulation rates occur between 18 and 12.5 Ma and between 3.4 and 0 Ma. At Sites 646 and 647 in the Labrador Sea, organic-carbon contents vary between 0.1% and 0.75%. Cyclic 'Milankovitch-type' changes in organic-carbon deposition imply climate-controlled mechanisms that cause these fluctuations. The composition of organic matter at Site 645 is dominated by terrigenous components throughout the entire sediment sequence. An increased content of marine organic carbon was recorded only in the late-middle Miocene. At Sites 646 and 647, the origin of the organic matter most probably is marine. Oceanic paleoproductivity values were estimated, based on the amount of marine organic carbon. During most of the Neogene time interval at Site 645, productivity was low, i.e., similar or less than that measured in Baffin Bay today. Higher values of up to 150 (200) gC/m**2/y may have occurred only in the Miocene. At Sites 646 and 647, mean paleoproductivity values vary between 90 and 170 gC/m**2/y; i.e., these are also similar to those measured in the Labrador Sea today. Lower values of 40 to 70 gC/m**2/y were estimated for the early Eocene and (middle) Miocene.
Resumo:
Since studies on deep-sea cores were carried out in the early 1990s it has been known that ambient temperature may have a marked affect on apatite fission track annealing. Due to sluggish annealing kinetics, this effect cannot be quantified by laboratory annealing experiments. The unknown amount of low-temperature annealing remains one of the main uncertainties for extracting thermal histories from fission track data, particularly for samples which experienced slow cooling in shallow crustal levels. To further elucidate these uncertainties, we studied volcanogenic sediments from five deep-sea drill cores, that were exposed to maximum temperatures between ~10° and 70°C over geological time scales of ~15-120 Ma. Mean track lengths (MTL) and etch pit diameters (Dpar) of all samples were measured, and the chemical composition of each grain analyzed for age and track length measurements was determined by electron microprobe analysis. Thermal histories of the sampled sites were independently reconstructed, based on vitrinite reflectance measurements and/or 1D numerical modelling. These reconstructions were used to test the most widely used annealing models for their ability to predict low-temperature annealing. Our results show that long-term exposure to temperatures below the temperature range of the nominal apatite fission track partial annealing zone results in track shortening ranging between 4 and 11%. Both chlorine content and Dpar values explain the downhole annealing patterns equally well. Low chlorine apatite from one drill core revealed a systematic relation between Si-content and Dpar value. The question whether Si-substitution in apatite has direct and systematic effects on annealing properties however, cannot be addressed by our data. For samples, which remained at temperatures <30°C, and which are low in chlorine, the Laslett et al. [Laslett G., Green P., Duddy I. and Gleadow A. (1987) Thermal annealing of fission tracks in apatite. Chem. Geol. 65, 1-13] annealing model predicts MTL up to 0.6 µm longer than those actually measured, whereas for apatites with intermediate to high chlorine content, which experienced temperatures >30°C, the predictions of the Laslett et al. (1987) model agree with the measured MTL data within error levels. With few exceptions, predictions by the Ketcham et al. [Ketcham R., Donelick R. and Carlson W. (1999) Variability of apatite fission-track annealing kinetics. III: Extrapolation to geological time scales. Am. Mineral. 84/9, 1235-1255] annealing model are consistent with the measured data for samples which remained at temperatures below ~30°C. For samples which experienced maximum temperatures between ~30 and 70°C, and which are rich in chlorine, the Ketcham et al. (1999) model overestimates track annealing.
Resumo:
One of the expected scientific results of Ocean Drilling Program Leg 167 was to reconstruct the Neogene history of biogenic calcium carbonate accumulation in the northeastern Pacific along the California margin (Lyle, Koizumi, Richter, et al., 1997). This aims to constrain inorganic carbon burial rates, deep-water hydrography in the North Pacific, and linkages between deep Atlantic and Pacific circulation and carbonate accumulation or dissolution patterns. Data are presented for four sites. Two of them are located in the California bight-East Cortez Basin (Site 1012: 32°16.970?N 118°23.024?W, 1773 m) and San Nicholas Basin (Site 1013: 32°48.040??, 118°53.992?W, 1564 m). The others are the dedicated Hole 1017E at Site 1017 (34°32.099?N, 121°6.430?W, 955 m) and Site 1019 in the Eel River Basin (41¢X40.972?N, 124°55.975?W, 977 m). Reconstruction of paleo-sea-surface temperatures (SST) by determining the alkenone unsaturation index of the extractable organic matter is an independent technique and helps to verify oxygen-isotope-based estimates. Results from the uppermost 600 cm of the dedicated Hole 1017E are expected to reveal the local temperature history of the last 30 k.y.
Radiocarbon dating, sedimentation rate, granulometry and organic carbon content of ODP Leg 182 sites
Resumo:
This data report presents sedimentological (grain size) and geochemical (X-ray diffraction, total organic carbon, accelerator mass spectrometry radiocarbon, and percent carbonate) information obtained from the western transect (Sites 1132, 1130, and 1134) and the eastern transect (Sites 1129, 1131, and 1127) in the Great Australian Bight during Leg 182. The purpose is to quantify changing rates of sediment accumulation and changes in sediment type from the late Pleistocene and Holocene, in order to relate these changes to the well-known sea level curve that exists for this time frame. Ultimately, these data can be used to more effectively interpret lithologic variations deeper in the Pleistocene succession, which most likely represent orbitally forced sea level events.
Resumo:
Postcruise X-ray diffraction (XRD) data for 95 whole-rock samples from Holes 1188A, 1188F, 1189A, and 1189B are presented. The samples represent alteration types recovered during Leg 193. The data set is incorporated into the shipboard XRD data set. Based on the newly obtained XRD data, distribution of alteration phases were redrawn for Ocean Drilling Program Sites 1188 and 1189.
Resumo:
The recognition of finely disseminated gas hydrate in deep marine sediments heavily depends on various indirect techniques because this mineral quickly decomposes upon recovery from in situ pressure and temperature conditions. Here, we discuss molecular properties of closely spaced gas voids (formed as a result of core recovery) and gas hydrates from an area of relatively low gas flux at the flanks of the southern Hydrate Ridge offshore Oregon (ODP Sites 1244, 1245 and 1247). Within the gas hydrate occurrence zone (GHOZ), the concentration of ethane (C2) and propane (C3) in adjacent gas voids shows large variability. Sampled gas hydrates are enriched in C2 relative to void gases but do not contain C3. We suggest that the observed variations in the composition of void gases is a result of molecular fractionation during crystallization of structure I gas hydrate that contains C2 but excludes C3 from its crystal lattice. This hypothesis is used to identify discrete intervals of finely disseminated gas hydrate in cored sediments. Variations in gas composition help better constrain gas hydrate distribution near the top of the GHOZ along with variations in pore water chemistry and core temperature. Sediments near the base of the gas hydrate stability zone are relatively enriched in C2+ hydrocarbon gases. Complex and poorly understood geological and geochemical processes in these deeper sediments make the identification of gas hydrate based on molecular properties of void gases more ambiguous. The proposed technique appears to be a useful tool to better understand the distribution of gas hydrate in marine sediments and ultimately the role of gas hydrate in the global carbon cycle.