998 resultados para Scattering medium
Resumo:
Four different sizes of citrate-protected silver nanoplates with the corresponding in-plane dipole resonance band at 530, 619, 778, and 858 nm, respectively, are synthesized for surface-enhanced Raman scattering (SERS) study. Their aggregation behaviors are monitored by use of UV-vis spectroscopy. During the aggregation process, a marked red shift of the in-plane dipole resonance of silver nanoplates is observed, whereas other resonance modes of them only have small alterations in the site or intensity. Aggregated silver nanoplates can serve as active SERS substrates with an enhancement factor of about 4.5 x 10(5) using 2-aminothiophenol as a probing molecule. The SERS performance of silver nanoplates is even superior to the commonly used Lee-Meisel silver colloid, making them very attractive for SERS applications.
Resumo:
We report a simple procedure to assemble gold nanoparticles into hollow tubular morphology with micrometer scale, wherein the citrate molecule is used not only as a reducing and capping agent, but also as an assembling template. The nanostructure and growth mechanism of microtubes are explored via SEM, TEM, FTIR spectra, and UV-vis spectra studies. The incorporation of larger gold nanoparticles by electroless plating results in an increase in the diameter of microtubes from 900 nm to about 1.2 mu m. The application of the microtubes before and after electroless plating in surface-enhanced Raman scattering (SERS) is investigated by using 4-aminothiophenol (4-ATP) as probe molecules. The results indicate that the microtubes both before and after electroless plating can be used as SERS substrates. The microtubes after electroless plating exhibit excellent enhancement ability.
Resumo:
Physical gelation in the concentrated Pluronic F127/D2O solution has been studied by a combination of small-angle neutron scattering (SANS) and Monte Carlo simulation. A 15% F127/D2O solution exhibits a sol-gel transition at low temperature and a gel-sol transition at the higher temperature, as evidenced by SANS and Monte Carlo simulation studies. Our SANS and simulation results also suggest that the sol-gel transition is dominated by the formation of a percolated polymer network, while the gel-sol transition is determined by the loss of bound solvent. Furthermore, different diffusion behaviors of different bound solvents and free solvent are observed. We expect that this approach can be further extended to study phase behaviors of other systems with similar sol-gel phase diagrams.
Resumo:
Didodecyldimethylammonium bromide (DDAB) lipid bilayer-protected gold nanoparticles (AuNPs), which were stable and hydrophilic, were synthesized by in situ reduction of HAuCl4 with NaBH4 in an aqueous medium in the presence of DDAB. As-prepared nanoparticles were characterized by UV-vis spectra, transmission electron microscopy, dynamic light scattering analysis, and X-ray photoelectron spectroscopy. All these data supported the formation of AuNPs. Fourier transform infrared spectroscopy (FTIR) and differential thermal analysis/thermogravimetric analysis data revealed that DDAB existed in a bilayer structure formed on the particle surface, resulting in a positively charged particle surface. The FTIR spectra also indicated that the DDAB bilayer coated on the surface of AuNPs was probably in the ordered gel phase with some end-gauche defects. On the basis of electrostatic interactions between such AuNPs and anionic polyelectrolyte poly(sodium 4-styrenesulfonate) (PSS), we successfully fabricated (PSS/AuNP)(n) multilayers on a cationic polyelectrolyte poly(ethylenimine) coated indium tin oxide substrate via the layer-by-layer self-assembly technique and characterized as-formed multilayers with UV-vis spectra and atomic force microscopy.
Resumo:
A polymer dispersion consisting of soft latex spheres with a diameter of 135 nm was used to produce a crystalline film with face-centered cubic (fcc) packing of the spheres. Different from conventional small-molecule and hardsphere colloidal crystals, the crystalline latex film in the present case is soft (i.e., easily deformable). The structural evolution of this soft colloidal latex film under stretching was investigated by in-situ synchrotron ultra-small-angle X-ray scattering. The film exhibits polycrystalline scattering behavior corresponding to fcc structure. Stretching results not only in a large deformation of the crystallographic structure but also in considerable nonaffine deformation at high draw ratios. The unexpected nonaffine deformation was attributed to slippage between rows of particles and crystalline grain boundaries. The crystalline structure remains intact even at high deformation, suggesting that directional anisotropic colloidal crystallites can be easily produced.
Resumo:
A sandwich structure consisting of Ag nanoparticles (NPs), p-aminothiophenol (p-ATP) self-assembled monolayers (SAMs), and Ag NPs was fabricated on glass and characterized by surface enhanced Raman scattering (SERS). The SERS spectrum of a p-ATP SAM in such sandwich structure shows that the electromagnetic enhancement is greater than that on Ag NPs assembled on glass. The obtained enhancement factors (EF) on solely one sandwich structure were as large as 6.0 +/- 0.62x10(4) and 1.2 +/- 0.62x10(7) for the 7a and 3b(b(2)) vibration modes, respectively. The large enhancement effect of p-ATP SAMs is likely a result of plasmon coupling between the two layers of Ag NP (localized surface plasmon) resonance, creating a large localized electromagnetic field at their interface, where p-ATP resides. Moreover, the fact that large EF values (similar to 1.9 +/- 0.7x10(4) and 9.4 +/- 0.7x10(6) for the 7a- and b(2)-type vibration modes, respectively) were also obtained on a single sandwich structure of Au NPs/p-ATP SAMs/Ag NPs in the visible demonstrates that the electromagnetic coupling does not exist only between Ag NPs but also between Au and Ag NPs.
Resumo:
Surface-enhanced Raman scattering (SERS) activity of silver-gold bimetallic nanostructures (a mean diameter of similar to 100 nm) with hollow interiors was checked using p-aminothiophenol (p-ATP) as a probe molecule at both visible light (514.5 nm) and near-infrared (1064 nm) excitation. Evident Raman peaks of p-ATP were clearly observed, indicating the enhancement Raman scattering activity of the hollow nanostructure to p-ATP. The enhancement factors (EF) at the hollow nanostructures were obtained to be as large as (0.8 +/- 0.3)x10(6) and (2.7 +/- 0.5)x10(8) for 7a and 19b (b(2)) vibration mode, respectively, which was 30-40 times larger than that at silver nanoparticles with solid interiors at 514.5 nm excitation. EF values were also obtained at 1064 nm excitation for 7a and b(2)-type vibration mode, which were estimated to be as large as (1.0 +/- 0.3)x10(6) and (0.9 +/- 0.2)x10(7), respectively. The additional EF values by a factor of similar to 10 for b(2)-type band were assumed to be due to the chemical effect. Large electromagnetic EF values were presumed to derive from a strong localized plasmas electromagnetic field existed at the hollow nanostructures.
Resumo:
We report an easy synthesis of highly branched gold particles through a seed-mediated growth approach in the presence of citrate. The addition of citrate in the growth solution is found to be crucial for the formation of these branched gold particles. Their size can be varied from 47 to 185 nm. The length of the thumb-like branch is estimated to be between about 5 and 20 nm, and changes slightly as the particle size increases. Owing to these obtuse and short branches, their surface plasmon resonance displays a marked red-shift with respect to the normal spherical particles. These branched gold particles exhibit stronger SERS activity than the non-branched ones, which is most likely related to these unique branching features.
Resumo:
The synergistic effect of 1-phenyl-3-methyl-4-benzoyl-pyrazalone-5 (HPMBP, HA) and di-(2ethylhexyl)-2-ethylhexylphosphonate (DEHEHP, B) in the extraction of rare earths (RE) from chloride solutions has been investigated. Under the experimental conditions used, there was no detectable extraction when DEHEHP was used as a single extractant while the amount of RE(III) extracted by HPMBP alone was also low. But mixtures of the two extractants at a certain ratio had very high extractability for all the RE (III). For example, the synergistic enhancement coefficient was calculated to be 9.35 for Y3+, and taking Yb3+ and Y3+ as examples, RE3+ is extracted as RE(OH)A(2).B. The stoichiometry, extraction constants and thermodynamic functions such as Gibbs free energy change Delta G (-17.06kJmol(-1)), enthalpy change Delta H (-35.08kjmol(-1)) and entropy change Delta S (-60.47JK(-1)mol(-1)) for Y3+ at 298 K were determined. The separation factors (SF) for adjacent pairs of rare earths were calculated. Studies show that the binary extraction system not only enhances the extraction efficiency of RE(III) but also improves the selectivity, especially between La(III) and the other rare earth elements.
Resumo:
Studies of the extraction kinetics of cerium(IV) into n-heptane solutions of di(2-ethylhexyl)-2-ethylhexyl phosphonate DEHEHP from HNO3-HF solutions have been carried out using a constant interfacial cell with laminar flow. The experimental hydrodynamic conditions were chosen so that the contribution of diffusion to the measured rate of reaction was minimized. The data were analyzed in terms of pseudo-first order constants. The effects of the stirring rate, specific interfacial area, and temperature on the extraction rate showed that the most probable reaction zone is in the aqueous homogeneous phase. The results were compared with those of the system without HF. It was concluded that the presence of HF decreases the extraction rate of cerium. The addition of HF increases the activation energy for the forward reaction from 21.2 to 55.3 kJ/mol and for the reverse process from 57.9 to 79.0 kJ/mol. According to the experimental data correlated as a function of the concentration of the relevant species involved in the extraction reaction, the corresponding rate equation was deduced as follows:-d[Ce]/dt = k[Ce] center dot B-0.62 center dot HF-0.58 center dot [NO3-](0.57)
Resumo:
The extraction of trivalent rare earths ( RE) from nitrate solutions with di-(2-ethylhexyl) 2-ethylhexyl phosphonate (DEHEHP, B) and synergistic extraction combined with 1-phenyl-3-methyl-4-benzoyl-pyrazolone-5 (HPMBP, HA) were investigated. The extraction distribution ratios demonstrate a distinct "tetra effect," and Y lies between Tb and Dy when DEHEHP is used as a single extractant for RE. According to the corresponding separation factors (SF12) for adjacent pairs of rare earths, it could be concluded that DEHEHP could be employed for the separation of La from the other rare earths, and Y from light rare earths. The present work has also found that mixtures of HPMBP and DEHEHP have an evident synergistic effect for RE(III). Taking Y( III) as an example, a possible synergistic extraction mechanism is proposed. The enhancement of extraction in the binary system can be explained due to the species Y(NO3) (.) A(2) (.) HA (.) B formed. The synergistic enhancement coefficients ( R), extraction constants, formation constants and thermodynamic functions of the reaction were calculated.
Resumo:
The extraction and stripping of ytterbium (III) from sulfuric acid medium using Cyanex 923 in heptane solution was investigated. The effects of extractant concentration, pH and sulfate ion as well as stripping agents, acidity and temperature on the extraction and stripping were studied. The equilibrium constants and thermodynamic parameters, such as Delta H (10.76 kJ(.)mol(-1)), Delta G (-79.26 kJ(.)mol(-1)) and Delta S (292.41 J(.)K(-1.)mol(-1)), were calculated. The extraction mechanism and the complex species extracted were determined by slope analysis and FrIR spectra. Furthermore, it was found that the extraction of Yb (III) from sulfuric acid medium by Cyanex 923 increased with pH, concentration of SO42-, HSO4-, and extractant concentration, and approximately a quantitative extraction of Yb (III) was achieved at an equilibrium pH near 3.0, and the extracted complex was YbSO4(HSO4)(.)2Cyanex923((o)).
Resumo:
This paper reports an aggregation-based method for the fabrication of composite Au/Ag nanoshells with tunable thickness and surface roughness. It is found that the resultant roughened composite Au/Ag nanoshells can attract each other spontaneously to form films at the air-water interface. Importantly, such films can be transferred onto the solid substrates without being destroyed and show excellent surface-enhanced Raman scattering (SERS) enhancement ability. Their strong enhancement ability may stem from the unique two-dimensional structure itself.
Resumo:
Flow-mode static and dynamic laser light scattering (SLS/DLS) studies of polymers, including polystyrene, polyethylene, polypropylene and poly(dimethylsiloxane) (PDMS), in 1,2,4-trichlorobenzene (TCB) at 150 degreesC were performed on a high temperature gel permeation chromatography (GPC) coupled with a SLS/DLS detector. Both absolute molecular weight (M) and molecular sizes (radius of gyration, R-g and hydrodynamic radius, R-h) of polymers eluting from the GPC columns were obtained simultaneously. The conformation of different polymers in TCB at 150 degreesC were discussed according to the scaling relationships between R-g, R-h and M and the rho-ratio (p = R-g/R-h). Flow-mode DLS results of PDMS were verified by batch-mode DLS study of the same sample. The presented technique was proved to be a convenient and quick method to study the shape and conformation of polymers in solution at high temperature. However, the flow-mode DLS was only applicable for high molecular weight polymers with a higher refractive index increment such as PDMS.
Resumo:
The synergistic effect of 1-phenyl-3-methyl-4-benzoyl-pyrazalone-5 (HPMBP) and triisobutylphosphine sulphide (TIBPS, B) is investigated in the extraction of lanthanum(III) from chloride solution. Lanthanum(III) is extracted by the mixture as LaCl2.PMBP.B-0.5 instead of La(PMBP)(3).(HPMBP) which is extracted by HPMBP alone. The equilibrium constants and thermodynamic functions such as DeltaG, DeltaH and DeltaS are determined. The extraction of other rare earth ions by mixtures of HPMBP and TIBPS is also studied and the possibility of separating rare earth ions is discussed.