967 resultados para Scale approximately 1:7,000None
Resumo:
The extent of snow cover at the end of the ablation season on glaciers in the Tyrolean Alps in 1972 and 1973 was determined from Landsat-1 Multispectral Scanner (MSS) images. For snovv mapping the MSS-images with a ground resolution of 80 meters were enlarged to a scale of 1: 100.000 by photographic methods. Different appearance of snow cover in the 4 MSS-channels is discussed in connection with ground truth control. The accuracy of snow and ice mapping from Landsat images was checked on 15 glaciers with an area from 1 to 10 km2 by aerial photography and/or ground truth control. These comparisons imply the usefulness of Landsat images for snow mapping on glaciers of a few square kilometers. The altitude of the equilibrium line was determined from Landsat images for 53 glaciers in the Tyrolean Alps. The regional differences in the equilibrium line altitude correspond to the regional precipitation patterns. The equilibrium line was identical with the snow line at the end of the budget year 1971/1972; therefore it was possible to determine the equilibrium line from satellite images. For 1968/69 the equilibrium line was mapped from aerial photographs for several glaciers. In 1972/73 mass balance was strongly negative and the equilibrimn line was within the firn area of the glaciers. Therefore it was not possible to distinguish between accumulation and ablation areas from the Landsat images of September 1973; however, snow and ice areas could be olearly differentiated. The ratios of accumulation area 01' snow area to the total area of the glaciers were determineel from satellite images and aerial photography separately for aelvancing anel for retreating glaciers and were relateel to the mass balance. In the budget years 1968/69 and 1972/73 with negative mass balance the accumulation area ratios of the advancing glacien; were olearly different from the ratios of the retreating glaciers, in 1971/72 with positive 01' balanced mass budget the differences between advancing and retreating glaciers were not significant.
Resumo:
Siliciclastic sedimentation at Ocean Drilling Program Site 1017 on the southern slope of the Santa Lucia Bank, central California margin, responded closely to oceanographic and climatic change over the past ~130 ka. Variation in mean grain-size and sediment sorting within the ~25-m-thick succession from Hole 1017E show Milankovitch-band to submillenial-scale variation. Mean grain size of the "sortable silt" fraction (10-63 µm) ranges from 17.6 to 33.9 µm (average 24.8 µm) and is inversely correlated with the degree of sorting. Much of the sediment has a bimodal or trimodal grain-size distribution that is composed of distinct fine silt, coarse silt to fine sand, and clay-size components. The position of the mode and the sorting of each component changes through the succession, but the primary variation is in the presence or abundance of the coarse silt fraction that controls the overall mean grain size and sorting of the sample. The occurrence of the best-sorted, finest grained sediment at high stands of sea level (Holocene, marine isotope Substages 5c and 5e) reflect the linkage between global climate and the sedimentary record at Site 1017 and suggest that the efficiency of off-shelf transport is a key control of sedimentation on the Santa Lucia Slope. It is not clear what proportion of the variation in grain size and sorting may also be caused by variations in bottom current strength and in situ hydrodynamic sorting.
Resumo:
Seismic velocities in rocks are influenced by the properties of the solid, the pore fluid, and the pore space. Cracks dramatically affect seismic velocities in rocks; their influence on the effective elastic moduli of rocks depends on their shape and concentration. Thin cracks (or fractures) substantially lower the moduli of a rock relative to the effect of spherical voids (or vesicles), and lower moduli are reflected by lower P- and S-wave velocities. The objective of this research is to determine the types and concentrations of cracks and their influence on the seismic properties of subaerially erupted basalts drilled from Hole 990A on the Southeast Greenland margin during Ocean Drilling Program Leg 163. Ellipsoidal cracks are used to model the voids in the rocks. The elastic moduli of the solid (grains) are also free parameters in the inverse modeling procedure. The apparent grain moduli reflect a weighted average of the moduli of the constituent minerals (e.g., plagioclase, augite, and clay minerals). The results indicate that (1) there is a strong relationship between P-wave velocity and porosity, suggesting a similarity of pore shape distributions, (2) the distribution of crack types within the massive, central region of aa flows from Hole 990A is independent of total porosity, (3) thin cracks are the first to be effectively sealed by alteration products, and (4) grain densities (an alteration index) and apparent grain moduli of the basalt samples are directly related.
Resumo:
The development of an orbitally tuned time scale for the ODP leg 138 sites provides biostratigraphers a very high resolution chronostratigraphic framework. With this framework we are better able to define which of the first and last appearances of species appear to be synchronous. In addition, the geographic distribution of sites provides the means with which the detailed spatial patterns of invasion of new species and the extinction of older species can be mapped. These maps not only provide information on the process of evolution, migration, and extinction, they can also be related to water mass distributions and near-surface circulation of the ocean. Of 39 radiolarian events studied at 11 sites in the eastern equatorial Pacific, 28 were found to have a minimum range in their estimated age that exceeded 0.15 m.y. The temporal pattern of first and last appearances of these diachronous events have coherent spatial patterns that indicate shifts in the areas of high oceanographic gradients over the past 10 Ma. These changes in the locations of high gradient regions suggest that the South Equatorial Current (SEC) was north of its present position prior to approximately 7 Ma. There was a southward shift in the northern boundary of this current between approximately 6 and 7 Ma, and the development of a relatively strong gradient between the northeastern and northwestern sites. Between approximately 3.7 and 3.4 Ma, there was a very slight northward shift in the northern boundary of the SEC and the steep gradients between the northeastern and northwestern sites may have disappeared. This change is thought to be associated with the closing of the Isthmus of Panama. The temporal-spatial patterns of diachronous events younger than 3.4 Ma are consistent with patterns of circulation in the modern ocean.
Resumo:
Along a transatlantic section from 57°N to 60°S that was carried out from November 7 till December 19, 2000 on board R/V Horizont II concentrations of CO2 were measured in the near-water layer of the air and differences between partial pressures in water and air in various climatic zones were calculated. It was shown that variations of CO2 concentrations in the near-water layer of air and those of values of water-air partial pressure difference were from 324x10**-6 to 426x10**-6 and from 150x10**-6 to 100x10**-6 atm, respectively. Maximum value of CO2 partial pressure in air in the near-water layer (426x10**-6 atm) was noted at 45°-47°N; minimum of 324x10**-6 atm was found in Antarctica at 59°S. During measurenents maximum value of CO2 partial pressure difference in water and air (150 x10**-6) was observed at 45°-48°N; maximum flux in this case was directed from the atmosphere to water. Maximum value of CO2 partial pressure difference in water and air for flux directed from the ocean to air (100 x10**-6) was observed at 59°-60°S. Comparison of calculated values of partial pressure difference in water and air with previous data points to more intense exchange of CO2 between the ocean and atmosphere during the survey period was considered. According to values of CO2 partial pressure difference in air and water as compared to 1975, exchange intensity in the Northern Hemisphere (absorption from the atmosphere) increased. A well-pronounced latitudinal effect of distribution of CO2 partial pressure in air was observed. Along the route variations in CO2 concentrations in zones of water divergence and convergence were registered.
Resumo:
Stubacher Sonnblickkees (SSK) is located in the Hohe Tauern Range (Eastern Alps) in the south of Salzburg Province (Austria) in the region of Oberpinzgau in the upper Stubach Valley. The glacier is situated at the main Alpine crest and faces east, starting at elevations close to 3050 m and in the 1980s terminated at 2500 m a.s.l. It had an area of 1.7 km² at that time, compared with 1 km² in 2013. The glacier type can be classified as a slope glacier, i.e. the relief is covered by a relatively thin ice sheet and there is no regular glacier tongue. The rough subglacial topography makes for a complex shape in the surface topography, with various concave and convex patterns. The main reason for selecting this glacier for mass balance observations (as early as 1963) was to verify on a complex glacier how the mass balance methods and the conclusions - derived during the more or less pioneer phase of glaciological investigations in the 1950s and 1960s - could be applied to the SSK glacier. The decision was influenced by the fact that close to the SSK there was the Rudolfshütte, a hostel of the Austrian Alpine Club (OeAV), newly constructed in the 1950s to replace the old hut dating from 1874. The new Alpenhotel Rudolfshütte, which was run by the Slupetzky family from 1958 to 1970, was the base station for the long-term observation; the cable car to Rudolfshütte, operated by the Austrian Federal Railways (ÖBB), was a logistic advantage. Another factor for choosing SSK as a glaciological research site was the availability of discharge records of the catchment area from the Austrian Federal Railways who had turned the nearby lake Weißsee ('White Lake') - a former natural lake - into a reservoir for their hydroelectric power plants. In terms of regional climatic differences between the Central Alps in Tyrol and those of the Hohe Tauern, the latter experienced significantly higher precipitation , so one could expect new insights in the different response of the two glaciers SSK and Hintereisferner (Ötztal Alps) - where a mass balance series went back to 1952. In 1966 another mass balance series with an additional focus on runoff recordings was initiated at Vernagtfener, near Hintereisferner, by the Commission of the Bavarian Academy of Sciences in Munich. The usual and necessary link to climate and climate change was given by a newly founded weather station (by Heinz and Werner Slupetzky) at the Rudolfshütte in 1961, which ran until 1967. Along with an extension and enlargement to the so-called Alpine Center Rudolfshütte of the OeAV, a climate observatory (suggested by Heinz Slupetzky) has been operating without interruption since 1980 under the responsibility of ZAMG and the Hydrological Service of Salzburg, providing long-term met observations. The weather station is supported by the Berghotel Rudolfshütte (in 2004 the OeAV sold the hotel to a private owner) with accommodation and facilities. Direct yearly mass balance measurements were started in 1963, first for 3 years as part of a thesis project. In 1965 the project was incorporated into the Austrian glacier measurement sites within the International Hydrological Decade (IHD) 1965 - 1974 and was afterwards extended via the International Hydrological Program (IHP) 1975 - 1981. During both periods the main financial support came from the Hydrological Survey of Austria. After 1981 funds were provided by the Hydrological Service of the Federal Government of Salzburg. The research was conducted from 1965 onwards by Heinz Slupetzky from the (former) Department of Geography of the University of Salzburg. These activities received better recognition when the High Alpine Research Station of the University of Salzburg was founded in 1982 and brought in additional funding from the University. With recent changes concerning Rudolfshütte, however, it became unfeasible to keep the research station going. Fortunately, at least the weather station at Rudolfshütte is still operating. In the pioneer years of the mass balance recordings at SSK, the main goal was to understand the influence of the complicated topography on the ablation and accumulation processes. With frequent strong southerly winds (foehn) on the one hand, and precipitation coming in with storms from the north to northwest, the snow drift is an important factor on the undulating glacier surface. This results in less snow cover in convex zones and in more or a maximum accumulation in concave or flat areas. As a consequence of the accentuated topography, certain characteristic ablation and accumulation patterns can be observed during the summer season every year, which have been regularly observed for many decades . The process of snow depletion (Ausaperung) runs through a series of stages (described by the AAR) every year. The sequence of stages until the end of the ablation season depends on the weather conditions in a balance year. One needs a strong negative mass balance year at the beginning of glacier measurements to find out the regularities; 1965, the second year of observation resulted in a very positive mass balance with very little ablation but heavy accumulation. To date it is the year with the absolute maximum positive balance in the entire mass balance series since 1959, probably since 1950. The highly complex ablation patterns required a high number of ablation stakes at the beginning of the research and it took several years to develop a clearer idea of the necessary density of measurement points to ensure high accuracy. A great number of snow pits and probing profiles (and additional measurements at crevasses) were necessary to map the accumulation area/patterns. Mapping the snow depletion, especially at the end of the ablation season, which coincides with the equilibrium line, is one of the main basic data for drawing contour lines of mass balance and to calculate the total mass balance (on a regular-shaped valley glacier there might be an equilibrium line following a contour line of elevation separating the accumulation area and the ablation area, but not at SSK). - An example: in 1969/70, 54 ablation stakes and 22 snow pits were used on the 1.77 km² glacier surface. In the course of the study the consistency of the accumulation and ablation patterns could be used to reduce the number of measurement points. - At the SSK the stratigraphic system, i.e. the natural balance year, is used instead the usual hydrological year. From 1964 to 1981, the yearly mass balance was calculated by direct measurements. Based on these records of 17 years, a regression analysis between the specific net mass balance and the ratio of ablation area to total area (AAR) has been used since then. The basic requirement was mapping the maximum snow depletion at the end of each balance year. There was the advantage of Heinz Slupetzky's detailed local and long-term experience, which ensured homogeneity of the series on individual influences of the mass balance calculations. Verifications took place as often as possible by means of independent geodetic methods, i.e. monoplotting , aerial and terrestrial photogrammetry, more recently also the application of PHOTOMODELLER and laser scans. The semi-direct mass balance determinations used at SSK were tentatively compared with data from periods of mass/volume change, resulting in promising first results on the reliability of the method. In recent years re-analyses of the mass balance series have been conducted by the World Glacier Monitoring Service and will be done at SSK too. - The methods developed at SSK also add to another objective, much discussed in the 1960s within the community, namely to achieve time- and labour-saving methods to ensure continuation of long-term mass balance series. The regression relations were used to extrapolate the mass balance series back to 1959, the maximum depletion could be reconstructed by means of photographs for those years. R. Günther (1982) calculated the mass balance series of SSK back to 1950 by analysing the correlation between meteorological data and the mass balance; he found a high statistical relation between measured and determined mass balance figures for SSK. In spite of the complex glacier topography, interesting empirical experiences were gained from the mass balance data sets, giving a better understanding of the characteristics of the glacier type, mass balance and mass exchange. It turned out that there are distinct relations between the specific net balance, net accumulation (defined as Bc/S) and net ablation (Ba/S) to the AAR, resulting in characteristic so-called 'turnover curves'. The diagram of SSK represents the type of a glacier without a glacier tongue. Between 1964 and 1966, a basic method was developed, starting from the idea that instead of measuring years to cover the range between extreme positive and extreme negative yearly balances one could record the AAR/snow depletion/Ausaperung during one or two summers. The new method was applied on Cathedral Massif Glacier, a cirque glacier with the same area as the Stubacher Sonnblickkees, in British Columbia, Canada. during the summers of 1977 and 1978. It returned exactly the expected relations, e.g. mass turnover curves, as found on SSK. The SSK was mapped several times on a scale of 1:5000 to 1:10000. Length variations have been measured since 1960 within the OeAV glacier length measurement programme. Between 1965 and 1981, there was a mass gain of 10 million cubic metres. With a time lag of 10 years, this resulted in an advance until the mid-1980s. Since 1982 there has been a distinct mass loss of 35 million cubic metres by 2013. In recent years, the glacier has disintegrated faster, forced by the formation of a periglacial lake at the glacier terminus and also by the outcrops of rocks (typical for the slope glacier type), which have accelerated the meltdown. The formation of this lake is well documented. The glacier has retreated by some 600 m since 1981. - Since August 2002, a runoff gauge installed by the Hydrographical Service of Salzburg has recorded the discharge of the main part of SSK at the outlet of the new Unterer Eisboden See. The annual reports - submitted from 1982 on as a contractual obligation to the Hydrological Service of Salzburg - document the ongoing processes on the one hand, and emphasize the mass balance of SSK and outline the climatological reasons, mainly based on the met-data of the observatory Rudolfshütte, on the other. There is an additional focus on estimating the annual water balance in the catchment area of the lake. There are certain preconditions for the water balance equation in the area. Runoff is recorded by the ÖBB power stations, the mass balance of the now approx. 20% glaciated area (mainly the Sonnblickkees) is measured andthe change of the snow and firn patches/the water content is estimated as well as possible. (Nowadays laserscanning and ground radar are available to measure the snow pack). There is a net of three precipitation gauges plus the recordings at Rudolfshütte. The evaporation is of minor importance. The long-term annual mean runoff depth in the catchment area is around 3.000 mm/year. The precipitation gauges have measured deficits between 10% and 35%, on average probably 25% to 30%. That means that the real precipitation in the catchment area Weißsee (at elevations between 2,250 and 3,000 m) is in an order of 3,200 to 3,400 mm a year. The mass balance record of SSK was the first one established in the Hohe Tauern region (and now since the Hohe Tauern National Park was founded in 1983 in Salzburg) and is one of the longest measurement series worldwide. Great efforts are under way to continue the series, to safeguard against interruption and to guarantee a long-term monitoring of the mass balance and volume change of SSK (until the glacier is completely gone, which seems to be realistic in the near future as a result of the ongoing global warming). Heinz Slupetzky, March 2014
Resumo:
The pattern of ichthyolith distribution established in sequences with stratigraphies based on calcareous or siliceous microfossils is used to provide age correlations for three deep-sea pelagic clay intervals that lack the better known microfossils. At Site 637, approximately 25 m of brown clay in Cores 103-637A-21R through 103-637A-23R underlies upper Miocene sediments and is of Paleocene to early Eocene age. At Site 639, 1.7 m of brown clay in Core 103-639C-2R is Eocene to Oligocene. At Site 640, 3.5 m of clay in Cores 103-640A-1R and 103-640A-2R contains a Cretaceous to Paleocene sequence, with the Cretaceous/Tertiary boundary between 84 and 103 cm in Section 103-640A-2R-1.
Resumo:
Changing global climate due to anthropogenic emissions of CO2 are driving rapid changes in the physical and chemical environment of the oceans via warming, deoxygenation, and acidification. These changes may threaten the persistence of species and populations across a range of latitudes and depths, including species that support diverse biological communities that in turn provide ecological stability and support commercial interests. Worldwide, but particularly in the North Atlantic and deep Gulf of Mexico, Lophelia pertusa forms expansive reefs that support biological communities whose diversity rivals that of tropical coral reefs. In this study, L. pertusa colonies were collected from the Viosca Knoll region in the Gulf of Mexico (390 to 450 m depth), genotyped using microsatellite markers, and exposed to a series of treatments testing survivorship responses to acidification, warming, and deoxygenation. All coral nubbins survived the acidification scenarios tested, between pH of 7.67 and 7.90 and aragonite saturation states of 0.92 and 1.47. However, calcification generally declined with respect to pH, though a disparate response was evident where select individuals net calcified and others exhibited net dissolution near a saturation state of 1. Warming and deoxygenation both had negative effects on survivorship, with up to 100% mortality observed at temperatures above 14ºC and oxygen concentrations of approximately 1.5 ml·l-1. These results suggest that, over the short-term, climate change and OA may negatively impact L. pertusa in the Gulf of Mexico, though the potential for acclimation and the effects of genetic background should be considered in future research.
Resumo:
Fibrous calcite veins with organic inclusions have been widely considered as indicators of oil and gas generation and migration under overpressure. Abundant fibrous calcite veins containing organic-bearing inclusions occur in faulted Lower Paleozoic through Triassic hydrocarbon source rocks in the Dabashan Foreland Belt (DBF). d13CPDB and d18OPDB values of the fibrous calcite range from - 4.8 to -1.9 to per mil and - 12.8 to - 8.4 per mil respectively, which is lighter than that of associated carbonate host rocks ranging from - 1.7 to + 3.1 per mil and - 8.7 to - 4.5 per mil. A linear relationship between d13CPDB and d18OPDB indicates that the calcite veins were precipitated from a mixture of basinal and surface fluids. The fibrous calcite contains a variety of inclusions, such as solid bitumen, methane bearing all-liquid inclusions, and vapor-liquid aqueous inclusions. Homogenization temperatures of aqueous inclusions range from 140 to 196° with an average of 179°. Salinities of aqueous inclusions average 9.7 wt% NaCl. Independent temperatures from bitumen reflectance and inclusion phase relationships of aqueous and methane inclusions were used to determine fluid pressures. Results indicate high pressures, elevated above typical lithostatic confining pressure, from 150 to 200 MPa. The elevated salinity and high temperature and pressure conditions of the fibrous calcite veins argue against an origin solely from burial overpressure resulting from clay transformation and dehydration reactions. Instead fluid inclusion P-T data and geochemistry results and regional geology indicate abnormally high pressures during fluid migration. These findings indicate that tectonic stress generated fracture and fault fluid pathways and caused migration of organic bearing fluids from the DBF during the Yanshan orogeny.
Resumo:
The International Bathymetric Chart of the Southern Ocean (IBCSO) Version 1.0 is a new digital bathymetric model (DBM) portraying the seafloor of the circum-Antarctic waters south of 60° S. IBCSO is a regional mapping project of the General Bathymetric Chart of the Oceans (GEBCO). IBCSO Version 1.0 DBM has been compiled from all available bathymetric data collectively gathered by more than 30 institutions from 15 countries. These data include multibeam and single beam echo soundings, digitized depths from nautical charts, regional bathymetric gridded compilations, and predicted bathymetry. Specific gridding techniques were applied to compile the DBM from the bathymetric data of different origin, spatial distribution, resolution, and quality. The IBCSO Version 1.0 DBM has a resolution of 500 x 500 m, based on a polar stereographic projection, and is publicly available together with a digital chart for printing from the project website (http://www.ibcso.org) and from the two data sets shown at the bottom of this page.