948 resultados para Sarpi, Paolo, 1552-1626
Resumo:
The development of practical agent languages has progressed significantly over recent years, but this has largely been independent of distinct developments in aspects of multiagent cooperation and planning. For example, while the popular AgentSpeak(L) has had various extensions and improvements proposed, it still essentially a single-agent language. In response, in this paper, we describe a simple, yet effective, technique for multiagent planning that enables an agent to take advantage of cooperating agents in a society. In particular, we build on a technique that enables new plans to be added to a plan library through the invocation of an external planning component, and extend it to include the construction of plans involving the chaining of subplans of others. Our mechanism makes use of plan patterns that insulate the planning process from the resulting distributed aspects of plan execution through local proxy plans that encode information about the preconditions and effects of the external plans provided by agents willing to cooperate. In this way, we allow an agent to discover new ways of achieving its goals through local planning and the delegation of tasks for execution by others, allowing it to overcome individual limitations.
Resumo:
A system built in terms of autonomous agents may require even greater correctness assurance than one which is merely reacting to the immediate control of its users. Agents make substantial decisions for themselves, so thorough testing is an important consideration. However, autonomy also makes testing harder; by their nature, autonomous agents may react in different ways to the same inputs over time, because, for instance they have changeable goals and knowledge. For this reason, we argue that testing of autonomous agents requires a procedure that caters for a wide range of test case contexts, and that can search for the most demanding of these test cases, even when they are not apparent to the agents’ developers. In this paper, we address this problem, introducing and evaluating an approach to testing autonomous agents that uses evolutionary optimization to generate demanding test cases.
Resumo:
The Open Provenance Model is a model of provenance that is designed to meet the following requirements: (1) To allow provenance information to be exchanged between systems, by means of a compatibility layer based on a shared provenance model. (2) To allow developers to build and share tools that operate on such a provenance model. (3) To define provenance in a precise, technology-agnostic manner. (4) To support a digital representation of provenance for any 'thing', whether produced by computer systems or not. (5) To allow multiple levels of description to coexist. (6) To define a core set of rules that identify the valid inferences that can be made on provenance representation. This document contains the specification of the Open Provenance Model (v1.1) resulting from a community-effort to achieve inter-operability in the Provenance Challenge series.