961 resultados para Sandwich Plates
Resumo:
The effect of HCl on authigenic chlorite in three different sandstones has been examined uisng an Environmental Scanning Electron Microscope (ESEM), together with conventional analytical techniques. The ESEM enabled chlorites to be directly observed in situ at high magnifications during HCl treatment, and was particularly effective in allowing the same chlorite areas to be closely compared before and after acid treatment. Chlorites were reacted with 1M to 10M HCl at temperatures up to 80°C and for periods up to five months. After all treatments, chlorites show extensive leaching of iron, magnesium and aluminum, and their crystalline structure is destroyed. However, despite these major compositional and structural changes, chlorites show little or no visible evidence of acid attack, with precise morphological detail of individual plates preserved in all samples following acid treatments. Chlorite dissolution, sensu stricto, did not occur as a result of acidization of the host sandstones. Acid-treated chlorides are likely to exits in a structurally weakened state that may make them susceptible to physical disintegration during fluid flow. Accordingly, fines migration may be a significant engineering problem associated with the acidization of chlorite-bearing sandstones. © 1993.
Resumo:
In previous Analytical Electron Microscope studies of extraterrestrial Chondritic Porous Aggregate (CPA) W7029* A, we have reported on the presence of layer silicates(Rietmeijer and Mackinnon, 1984a; Mackinnon and Rietmeijer, 1983) and metal oxides (Rietmeijer and Mackinnon, 1984a; Mackinnon and Rietmeijer, 1984). We present here a continuation ofthis detailed mineralogical study and propose a scenario which may account for the variety and types of phases observed in this CPA. At least 50% ofCPA W7029*A is carbonaceous material, primarily poorly graphitised carbon (POC) with morphologies similar to POC in acid residues of carbonaceous chondrites (Smith and Busek, 1981; Lumpkin, 1983). The basal spacing of graphite in CPA W7029*A ranges from 3.47-3.52 A and compares with doo, of graphite in the Allende residues (Smith and Buseck, 1981; Lumpkin, 1983). Low-temperature phases comprise - 20% of CPA W7029*A and include layer silicates, Bi,O" a-FeOOH(Rietmeijer and Mackinnon, 1984a; Mackinnon and Rietmeijer, 1983), BaSO.,.Ti.O, plates, pentlandite-violarite and bornite. Clusters of Mg-rich olivine and pyroxene make up - 12% of the aggregate...
Resumo:
Railroad corridors contain large number of Insulated Rail Joints (IRJs) that act as safety critical elements in the circuitries of the signaling and broken rail identification systems. IRJs are regarded as sources of excitation for the passage of loaded wheels leading to high impact forces; these forces in turn cause dips, cross levels and twists to the railroad geometry in close proximity to the sections containing the IRJs in addition to the local damages to the railhead of the IRJs. Therefore, a systematic monitoring of the IRJs in railroad is prudent to mitigate potential risk of their sudden failure (e.g., broken tie plates) under the traffic. This paper presents a simple method of periodic recording of images using time-lapse photography and total station surveying measurements to understand the ongoing deterioration of the IRJs and their surroundings. Over a 500 day period, data were collected to examine the trends in narrowing of the joint gap due to plastic deformation the railhead edges and the dips, cross levels and twists caused to the railroad geometry due to the settlement of ties (sleepers) around the IRJs. The results reflect that the average progressive settlement beneath the IRJs is larger than that under the continuously welded rail, which leads to excessive deviation of railroad profile, cross levels and twists.
Resumo:
A newly developed computational approach is proposed in the paper for the analysis of multiple crack problems based on the eigen crack opening displacement (COD) boundary integral equations. The eigen COD particularly refers to a crack in an infinite domain under fictitious traction acting on the crack surface. With the concept of eigen COD, the multiple cracks in great number can be solved by using the conventional displacement discontinuity boundary integral equations in an iterative fashion with a small size of system matrix to determine all the unknown CODs step by step. To deal with the interactions among cracks for multiple crack problems, all cracks in the problem are divided into two groups, namely the adjacent group and the far-field group, according to the distance to the current crack in consideration. The adjacent group contains cracks with relatively small distances but strong effects to the current crack, while the others, the cracks of far-field group are composed of those with relatively large distances. Correspondingly, the eigen COD of the current crack is computed in two parts. The first part is computed by using the fictitious tractions of adjacent cracks via the local Eshelby matrix derived from the traction boundary integral equations in discretized form, while the second part is computed by using those of far-field cracks so that the high computational efficiency can be achieved in the proposed approach. The numerical results of the proposed approach are compared not only with those using the dual boundary integral equations (D-BIE) and the BIE with numerical Green's functions (NGF) but also with those of the analytical solutions in literature. The effectiveness and the efficiency of the proposed approach is verified. Numerical examples are provided for the stress intensity factors of cracks, up to several thousands in number, in both the finite and infinite plates.
Resumo:
Titanium dioxide is one of the most basic materials in our daily life, which has emerged as an excellent photocatalyst material for environmental purification and photovoltaic material working in dye-sensitized solar cell. We present two types of TiO2 architectures which are constructed by plates and sheets, respectively, and both subunits are dominant with {001} facets. The photocatalytic degradation of methyl orange in UV/supported-TiO2 systems was investigated and the mechanism was discussed. The experimental results show that photocatalytic degradation rate is favoured by larger surface area. The sheet structure shows superior photocatalytic activity than plate structure. Moreover, the materials with sheet structure were also used to investigate the photovoltaic property. The power conversion efficiency is 7.57%, indicating the materials with this unique structure are excellent in photocatalytic and photovoltaic applications.
Resumo:
Beginning in 1974, a limited effort to collect extraterrestrial dust samples from the stratosphere using impactors mounted on NASA U-2 aircraft was initiated at NASA Ames Research Center (1). Subsequent studies (e.g. 1-9) have clearly established an extraterrestrial origin for some of the material. Attrition of comets is considered to be one of the potential sources of extraterrestrial dust(1,5). Additionally, some of the particles appear to represent a type of primitive material not represented in meteorite collections. In order to provide a greater availability of these samples to the scientific community, NASA-Johnson Space Center (JSC) began in May of 1981 a program dedicated to the systematic collection and curation of cosmic dust for scientific investigation. Collections were made at 18 to 20 km altitude by means of collectors mounted under the wings of a WB57F. When the aircraft reaches operating altitude, the collector plates (impactors) are extended into the ambient airstream with the collection surface normal to the airflow. To prevent particles from bouncing off the surface, the impactors are coated with a film of high viscosity silicone oil. The impactors are sealed in canisters to minimize contamination when not collecting.
Resumo:
The book documents new findings on the contribution of migrant young people to Australia’s urban life. The essays collected traces teenagers within a world of city suburbs and P plates, shopping malls and chat rooms and text messages. Proud of their migrant backgrounds, they are moving away from explicit ethnically defined cultural groups to focus on their place in contemporary Australian society. These young people through their every day activities are redefining what it means to be an Australian The book is edited by widely published cultural researchers Melissa Butcher from the University of Sydney and Mandy Thomas from the Australian National University who together worked on the GENERATE project. It is far too common for our youth to be portrayed as not belonging to our dominant or mainstream culture. In Ingenious, the editors study the kaleidoscope of influences and environments our youth move within - online networks, dance parties and more - to paint a flexible, innovative generation.
A new model to study healing of a complex femur fracture with concurrent soft tissue injury in sheep
Resumo:
High energy bone fractures resulting from impact trauma are often accompanied by subcutaneous soft tissue injuries, even if the skin remains intact. There is evidence that such closed soft tissue injuries affect the healing of bone fractures, and vice versa. Despite this knowledge, most impact trauma studies in animals have focussed on bone fractures or soft tissue trauma in isolation. However, given the simultaneous impact on both tissues a better understanding of the interaction between these two injuries is necessary to optimise clinical treatment. The aim of this study was therefore to develop a new experimental model and characterise, for the first time, the healing of a complex fracture with concurrent closed soft tissue trauma in sheep. A pendulum impact device was designed to deliver a defined and standardised impact to the distal thigh of sheep, causing a reproducible contusion injury to the subcutaneous soft tissues. In a subsequent procedure, a reproducible femoral butterfly fracture (AO C3-type) was created at the sheep’s femur, which was initially stabilised for 5 days by an external fixator construct to allow for soft tissue swelling to recede, and ultimately in a bridging construct using locking plates. The combined injuries were applied to twelve sheep and the healing observed for four or eight weeks (six animals per group) until sacrifice. The pendulum impact led to a moderate to severe circumferential soft tissue injury with significant bruising, haematomas and partial muscle disruptions. Posttraumatic measurements showed elevated intra-compartmental pressure and circulatory tissue breakdown markers, with recovery to normal, pre-injury values within four days. Clinically, no neurovascular deficiencies were observed. Bi-weekly radiological analysis of the healing fractures showed progressive callus healing over time, with the average number of callus bridges increasing from 0.4 at two weeks to 4.2 at eight weeks. Biomechanical testing after sacrifice showed increasing torsional stiffness between four and eight weeks healing time from 10% to 100%, and increasing ultimate torsional strength from 10% to 64% (relative to the contralateral control limb). Our results demonstrate the robust healing of a complex femur fracture in the presence of a severe soft tissue contusion injury in sheep and demonstrate the establishment of a clinically relevant experimental model, for research aimed at improving the treatment of bone fractures accompanied by closed soft tissue injuries.
Resumo:
Considerate amount of research has proposed optimization-based approaches employing various vibration parameters for structural damage diagnosis. The damage detection by these methods is in fact a result of updating the analytical structural model in line with the current physical model. The feasibility of these approaches has been proven. But most of the verification has been done on simple structures, such as beams or plates. In the application on a complex structure, like steel truss bridges, a traditional optimization process will cost massive computational resources and lengthy convergence. This study presents a multi-layer genetic algorithm (ML-GA) to overcome the problem. Unlike the tedious convergence process in a conventional damage optimization process, in each layer, the proposed algorithm divides the GA’s population into groups with a less number of damage candidates; then, the converged population in each group evolves as an initial population of the next layer, where the groups merge to larger groups. In a damage detection process featuring ML-GA, as parallel computation can be implemented, the optimization performance and computational efficiency can be enhanced. In order to assess the proposed algorithm, the modal strain energy correlation (MSEC) has been considered as the objective function. Several damage scenarios of a complex steel truss bridge’s finite element model have been employed to evaluate the effectiveness and performance of ML-GA, against a conventional GA. In both single- and multiple damage scenarios, the analytical and experimental study shows that the MSEC index has achieved excellent damage indication and efficiency using the proposed ML-GA, whereas the conventional GA only converges at a local solution.
Resumo:
Indonesia is a country spread across wide-ranging archipelago, located in South East Asia between two oceans, the Indian and the Pacific. Indonesia is well known as an active tectonic region because it lies on top of three major active tectonic plates: the Eurasian in the North, the Indian Ocean-Australian in the South, and the Pacific plate in the East. The southern and eastern part of the country features a range of volcanic arcs, volcanic mountains, and lowlands with 500 young volcanoes, of which 128 are active and thus representing 15% of the world’s active volcanoes. In the period 2002-2007, approximately 1782 disasters occurred, with hundreds of thousands of lives lost and billions of rupiah in losses incurred: (Floods - 1183 instances, cyclones - 272 instances, and landslides - 252 instances). Of these, the 2004 Aceh tsunami and the 2006 central Java earthquake (impacting predominantly city and suburbs of Yogyakarta) were the most significant. Even so, disaster management experts believe lessons learnt from the two major natural disasters needs to be formalised into laws and institutions before another disaster occurs, regardless of the type of natural disaster – i.e. Volcano eruption or landslide; as opposed to tsunami or earthquake. Following in the wake of disasters occurring in Yogyakarta, many of its community members responded by banding together as one, with the determination of rebuilding its villages and cities through the spirit of ‘gotong royong’. The idea of social interaction; in particular as a collective, consensual, and cooperative nation; has predominantly formed the ideological basis of Indonesia’s societal nature. Many Indonesian terms cohere to this ideology, such as: ‘koperasi” (cooperatives as the basis of economic interactions), ‘musyawarah’ (consensual nature in decision making), and ‘gotong royong’ (mutual assistance). ‘Gotong royong’ has become a key cultural operator in Indonesia, in particular In Jogjakarta. Appropriately so as ‘gotong royong’ is depicted from the traditional Javanese village, where labour is accomplished through reciprocal exchange and the villagers are motivated by a general ethos of selfishness and concern for the common good. The culture of ‘gotong royong’ promotes positive values such as social harmony and mutual reciprocation in disaster-affected areas provides the necessary spirit needed to endure the hardships and for all involved. While gotong royong emphasises the positive notions of mutual family support and deep community level activity there is a potential for contrast against government lead disaster response and recovery management activities especially in settings where sporadic governance mechanisms exist and transparency and accountability in the recovery process of public infrastructure assets have been questioned. This paper thus questions whether Gotong Royong is a double-edged sword, and explores the potential marriage of community values and governance mechanisms for future disaster management planning and practice.
Resumo:
Results of an interlaboratory comparison on size characterization of SiO2 airborne nanoparticles using on-line and off-line measurement techniques are discussed. This study was performed in the framework of Technical Working Area (TWA) 34—“Properties of Nanoparticle Populations” of the Versailles Project on Advanced Materials and Standards (VAMAS) in the project no. 3 “Techniques for characterizing size distribution of airborne nanoparticles”. Two types of nano-aerosols, consisting of (1) one population of nanoparticles with a mean diameter between 30.3 and 39.0 nm and (2) two populations of non-agglomerated nanoparticles with mean diameters between, respectively, 36.2–46.6 nm and 80.2–89.8 nm, were generated for characterization measurements. Scanning mobility particle size spectrometers (SMPS) were used for on-line measurements of size distributions of the produced nano-aerosols. Transmission electron microscopy, scanning electron microscopy, and atomic force microscopy were used as off-line measurement techniques for nanoparticles characterization. Samples were deposited on appropriate supports such as grids, filters, and mica plates by electrostatic precipitation and a filtration technique using SMPS controlled generation upstream. The results of the main size distribution parameters (mean and mode diameters), obtained from several laboratories, were compared based on metrological approaches including metrological traceability, calibration, and evaluation of the measurement uncertainty. Internationally harmonized measurement procedures for airborne SiO2 nanoparticles characterization are proposed.
Resumo:
This thesis concerns the mathematical model of moving fluid interfaces in a Hele-Shaw cell: an experimental device in which fluid flow is studied by sandwiching the fluid between two closely separated plates. Analytic and numerical methods are developed to gain new insights into interfacial stability and bubble evolution, and the influence of different boundary effects is examined. In particular, the properties of the velocity-dependent kinetic undercooling boundary condition are analysed, with regard to the selection of only discrete possible shapes of travelling fingers of fluid, the formation of corners on the interface, and the interaction of kinetic undercooling with the better known effect of surface tension. Explicit solutions to the problem of an expanding or contracting ring of fluid are also developed.
Resumo:
Layers (about 60-100 μm thick) of almost pure BaCuO2 (BC1), as determined using X-ray diffractometry (XRD) and scanning electron microscopy (SEM), coat the surfaces of YBa2Cu3O7-x (Y123) samples partial melt processed using a single-zone vertical furnace. The actual Cu/Ba ratio of the BC1 phase is 1.2-1.3 as determined using energy dispersive X-ray spectrometry (EDS). The nominally BC1 phase displays an exsolution of BC1.5 or BC2 in the form of thin plates (about 50-100 nm thick) along {100}-type cleavage planes or facets. The exsolved phase also fills cracks within the BC1 layer that require it to be in a molten state at some stage of processing. The samples were influenced by Pt contamination from the supporting wire, which may have stabilised the BC1.5 phase. Many of the Y123 grains have the same morphology as the exsolution domains, and run nearly parallel to the thin plates of the exsolved phases, strongly indicating that Y123 nucleation took place at the interface between the BC1 and the BC1.5 or BC2 exsolved phases. The network of nearly parallel exsolved 'channels' provides a matrix and a mechanism through which a high degree of local texture can be initiated in the material.
Resumo:
This project’s aim was to create new experimental models in small animals for the investigation of infections related to bone fracture fixation implants. Animal models are essential in orthopaedic trauma research and this study evaluated new implants and surgical techniques designed to improve standardisation in these experiments, and ultimately to minimise the number of animals needed in future work. This study developed and assessed procedures using plates and inter-locked nails to stabilise fractures in rabbit thigh bones. Fracture healing was examined with mechanical testing and histology. The results of this work contribute to improvements in future small animal infection experiments.
Resumo:
We report the influence of zinc oxide (ZnO) seed layers on the performance of ZnO-based memristive devices fabricated using an electrodeposition approach. The memristive element is based on a sandwich structure using Ag and Pt electrodes. The ZnO seed layer is employed to tune the morphology of the electrodeposited ZnO films in order to increase the grain boundary density as well as construct highly ordered arrangements of grain boundaries. Additionally, the seed layer also assists in optimizing the concentration of oxygen vacancies in the films. The fabricated devices exhibit memristive switching behaviour with symmetrical and asymmetrical hysteresis loops in the absence and presence of ZnO seed layers, respectively. A modest concentration of oxygen vacancy in electrodeposited ZnO films as well as an increase in the ordered arrangement of grain boundaries leads to higher switching ratios in Ag/ZnO/Pt devices.