986 resultados para SYMMETRICAL LINEAR COMPLEMENTARITY PROBLEMS
Resumo:
Linear response functions are implemented for a vibrational configuration interaction state allowing accurate analytical calculations of pure vibrational contributions to dynamical polarizabilities. Sample calculations are presented for the pure vibrational contributions to the polarizabilities of water and formaldehyde. We discuss the convergence of the results with respect to various details of the vibrational wave function description as well as the potential and property surfaces. We also analyze the frequency dependence of the linear response function and the effect of accounting phenomenologically for the finite lifetime of the excited vibrational states. Finally, we compare the analytical response approach to a sum-over-states approach
Resumo:
A variational approach for reliably calculating vibrational linear and nonlinear optical properties of molecules with large electrical and/or mechanical anharmonicity is introduced. This approach utilizes a self-consistent solution of the vibrational Schrödinger equation for the complete field-dependent potential-energy surface and, then, adds higher-level vibrational correlation corrections as desired. An initial application is made to static properties for three molecules of widely varying anharmonicity using the lowest-level vibrational correlation treatment (i.e., vibrational Møller-Plesset perturbation theory). Our results indicate when the conventional Bishop-Kirtman perturbation method can be expected to break down and when high-level vibrational correlation methods are likely to be required. Future improvements and extensions are discussed
Resumo:
When encountering a set of alternatives displayed in the form of a list, the decision maker usually determines a particular alternative, after which she stops checking the remaining ones, and chooses an alternative from those observed so far. We present a framework in which both decision problems are explicitly modeled, and axiomatically characterize a stop-and-choose rule which unifies position-biased successive choice and satisficing choice.
Resumo:
The application of the Fry method to measure strain in deformed porphyritic granites is discussed. This method requires that the distribution of markers has to satisfy at least two conditions. It has to be homogeneous and isotropic. Statistics on point distribution with the help of a Morishita diagram can easily test homogeneity. Isotropy can be checked with a cumulative histogram of angles between points. Application of these tests to undeformed (Mte Capanne granite, Elba) and to deformed (Randa orthogneiss, Alps of Switzerland) porphyritic granite reveals that their K-feldspars phenocrysts both satisfy these conditions and can be used as strain markers with the Fry method. Other problems are also examined. One is the possible distribution of deformation on discrete shear-bands. Providing several tests are met, we conclude that the Fry method can be used to estimate strain in deformed porphyritic granites. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
Most leadership and management researchers ignore one key design and estimation problem rendering parameter estimates uninterpretable: Endogeneity. We discuss the problem of endogeneity in depth and explain conditions that engender it using examples grounded in the leadership literature. We show how consistent causal estimates can be derived from the randomized experiment, where endogeneity is eliminated by experimental design. We then review the reasons why estimates may become biased (i.e., inconsistent) in non-experimental designs and present a number of useful remedies for examining causal relations with non-experimental data. We write in intuitive terms using nontechnical language to make this chapter accessible to a large audience.
Resumo:
In a number of programs for gene structure prediction in higher eukaryotic genomic sequences, exon prediction is decoupled from gene assembly: a large pool of candidate exons is predicted and scored from features located in the query DNA sequence, and candidate genes are assembled from such a pool as sequences of nonoverlapping frame-compatible exons. Genes are scored as a function of the scores of the assembled exons, and the highest scoring candidate gene is assumed to be the most likely gene encoded by the query DNA sequence. Considering additive gene scoring functions, currently available algorithms to determine such a highest scoring candidate gene run in time proportional to the square of the number of predicted exons. Here, we present an algorithm whose running time grows only linearly with the size of the set of predicted exons. Polynomial algorithms rely on the fact that, while scanning the set of predicted exons, the highest scoring gene ending in a given exon can be obtained by appending the exon to the highest scoring among the highest scoring genes ending at each compatible preceding exon. The algorithm here relies on the simple fact that such highest scoring gene can be stored and updated. This requires scanning the set of predicted exons simultaneously by increasing acceptor and donor position. On the other hand, the algorithm described here does not assume an underlying gene structure model. Indeed, the definition of valid gene structures is externally defined in the so-called Gene Model. The Gene Model specifies simply which gene features are allowed immediately upstream which other gene features in valid gene structures. This allows for great flexibility in formulating the gene identification problem. In particular it allows for multiple-gene two-strand predictions and for considering gene features other than coding exons (such as promoter elements) in valid gene structures.
Resumo:
Prevention programs in adolescence are particularly effective if they target homogeneous risk groups of adolescents who share a combination of particular needs and problems. The present work aims to identify and classify risky single-occasion drinking (RSOD) adolescents according to their motivation to engage in drinking. An easy-to-use coding procedure was developed. It was validated by means of cluster analyses and structural equation modeling based on two randomly selected subsamples of a nationally representative sample of 2,449 12- to 18-year-old RSOD students in Switzerland. Results revealed that the coding procedure classified RSOD adolescents as either enhancement drinkers or coping drinkers. The high concordance (Sample A: kappa - .88, Sample B: kappa - .90) with the results of the cluster analyses demonstrated the convergent validity of the coding classification. The fact that enhancement drinkers in both subsamples were found to go out more frequently in the evenings and to have more satisfactory social relationships, as well as a higher proportion of drinking peers and a lower likelihood to drink at home than coping drinkers demonstrates the concurrent validity of the classification. To conclude, the coding procedure appears to be a valid, reliable, and easy-to-use tool that can help better adapt prevention activities to adolescent risky drinking motives.
Resumo:
For single-user MIMO communication with uncoded and coded QAM signals, we propose bit and power loading schemes that rely only on channel distribution information at the transmitter. To that end, we develop the relationship between the average bit error probability at the output of a ZF linear receiver and the bit rates and powers allocated at the transmitter. This relationship, and the fact that a ZF receiver decouples the MIMO parallel channels, allow leveraging bit loading algorithms already existing in the literature. We solve dual bit rate maximization and power minimization problems and present performance resultsthat illustrate the gains of the proposed scheme with respect toa non-optimized transmission.
Resumo:
A systolic array to implement lattice-reduction-aided lineardetection is proposed for a MIMO receiver. The lattice reductionalgorithm and the ensuing linear detections are operated in the same array, which can be hardware-efficient. All-swap lattice reduction algorithm (ASLR) is considered for the systolic design.ASLR is a variant of the LLL algorithm, which processes all lattice basis vectors within one iteration. Lattice-reduction-aided linear detection based on ASLR and LLL algorithms have very similarbit-error-rate performance, while ASLR is more time efficient inthe systolic array, especially for systems with a large number ofantennas.
Resumo:
OBJECTIVE: The sensitivity and tolerance regarding ADHD symptoms obviously differ from one culture to another and according to the informants (parents, teachers, or children). This stimulates the comparison of data across informants and countries. METHOD: Parents and teachers of more than 1,000 school-aged Swiss children (5 to 17 years old) fill in Conners's questionnaires on ADHD. Children who are older than 10 years old also fill in a self-report questionnaire. Results are compared to data from a North American sample. RESULTS: Swiss parents and teachers tend to report more ADHD symptoms than American parents and teachers as far as the oldest groups of children are concerned. Interactions are evidenced between school achievement, child gender, and informants. A relatively low rate of agreement between informants is found. CONCLUSION: These results strengthen the importance to take into account all informants in the pediatric and the child psychiatry clinic, as well as in the epidemiological studies.
Resumo:
This paper deals with the problem of spatial data mapping. A new method based on wavelet interpolation and geostatistical prediction (kriging) is proposed. The method - wavelet analysis residual kriging (WARK) - is developed in order to assess the problems rising for highly variable data in presence of spatial trends. In these cases stationary prediction models have very limited application. Wavelet analysis is used to model large-scale structures and kriging of the remaining residuals focuses on small-scale peculiarities. WARK is able to model spatial pattern which features multiscale structure. In the present work WARK is applied to the rainfall data and the results of validation are compared with the ones obtained from neural network residual kriging (NNRK). NNRK is also a residual-based method, which uses artificial neural network to model large-scale non-linear trends. The comparison of the results demonstrates the high quality performance of WARK in predicting hot spots, reproducing global statistical characteristics of the distribution and spatial correlation structure.