960 resultados para SWELLING
Resumo:
A novel transition temperature in MeAM copolymer microgels is reported. Despite the fact that MeAM homopolymers do not show thermosensitive properties, a specific synthetic strategy leads to a thermo-responsive swelling behavior that could be potentially useful in medical and/or industrial applications. The pH and temperature-dependent swelling response of microgels of MeAM copolymerized with 2-aminomethylpyridine and ethylenediamine is reported. The changes in particle sizes, which depend on the nature of the surrounding environment, are recorded by QELS. The relation between copolymer structure and its novel behavior is analyzed by several techniques (1H NMR, TGA).
Resumo:
Colloidal nanosized folate-conjugated hydrogels for targeted chemotherapy were prepared via a versatile and efficient postsynthetic modification pathway starting from P(NPA-co-NIPAM). The modifications included the introduction of 4-methylpyridine as pH-sensitive pendant groups and the conjugation of folic acid to the microgel network. The microgels showed a specific swelling at pH?6 (endosomes) as judged by DLS studies varying the external pH. The relative composition of the microgels shows a clear influence on the pH volume transition shifting. The potential of the microgels for anticancer drug release at pH?=?5.0 was confirmed. Therefore, they are a promising targeting carrier for improved anticancer chemotherapy.
Resumo:
Synthetic hydrogel polymers were prepared by free radical photopolymerization in aqueous solution of the sodium salt of 2-acrylamido-2-methylpropane sulfonic acid (Na-AMPS). Poly(ethylene glycol) diacrylate (PEGDA) and 4,4'-azo-bis(4-cyanopentanoic acid) were used as the crosslinker and UV-photoinitiator, respectively. The effects of varying the Na-AMPS monomer concentration within the range of 30-50% w/v and the crosslinker concentration within the range of 0.1-1.0% mol (relative to monomer) were studied in terms of their influence on water absorption properties. The hydrogel sheets exhibited extremely high swelling capacities in aqueous media which were dependent on monomer concentration, crosslink density, and the ionic strength and composition of the immersion medium. The effects of varying the number-average molecular weight of the PEGDA crosslinker from = 250 to 700 were also investigated. Interestingly, it was found that increasing the molecular weight and therefore the crosslink length at constant crosslink density decreased both the rate of water absorption and the equilibrium water content. Cytotoxicity testing by the direct contact method with mouse fibroblast L929 cells indicated that the synthesized hydrogels were nontoxic. On the basis of these results, it is considered that photopolymerized Na-AMPS hydrogels crosslinked with PEGDA show considerable potential for biomedical use as dressings for partial thickness burns. This paper describes some structural effects which are relevant to their design as biomaterials for this particular application. © 2013 Copyright Taylor and Francis Group, LLC.
Resumo:
Gelatin is a principal excipient used as a binder in the formulation of lyophilized orally disintegrating tablets. The current study focuses on exploiting the physicochemical properties of gelatin by varying formulation parameters to determine their influence on orally disintegrating tablet (ODT) characteristics. Process parameters, namely pH and ionic strength of the formulations, and ball milling were investigated to observe their effects on excipient characteristics and tablet formation. The properties and characteristics of the formulations and tablets which were investigated included: glass transition temperature, wettability, porosity, mechanical properties, disintegration time, morphology of the internal structure of the freeze-dried tablets, and drug dissolution. The results from the pH study revealed that adjusting the pH of the formulation away from the isoelectric point of gelatin, resulted in an improvement in tablet disintegration time possibly due to increase in gelatin swelling resulting in greater tablet porosity. The results from the ionic strength study revealed that the inclusion of sodium chloride influenced tablet porosity, tablet morphology and the glass transition temperature of the formulations. Data from the milling study showed that milling the excipients influenced formulation characteristics, namely wettability and powder porosity. The study concludes that alterations of simple parameters such as pH and salt concentration have a significant influence on formulation of ODT. © 2011 by the authors; licensee MDPI, Basel, Switzerland.
Resumo:
The aquaporin family of integral membrane proteins is comprised of channels that mediate cellular water flow. Aquaporin 4 (AQP4) is highly expressed in the glial cells of the central nervous system and facilitates the osmotically-driven pathological brain swelling associated with stroke and traumatic brain injury. Here we show that AQP4 cell surface expression can be rapidly and reversibly regulated in response to changes of tonicity in primary cortical rat astrocytes and in transfected HEK293 cells. The translocation mechanism involves protein kinase A (PKA) activation, influx of extracellular calcium and activation of calmodulin. We identify five putative PKA phosphorylation sites and use site-directed mutagenesis to show that only phosphorylation at one of these sites, serine- 276, is necessary for the translocation response. We discuss our findings in the context of the identification of new therapeutic approaches to treating brain oedema.
Resumo:
The successful development of compressed ODTs utilises low compression forces to create a porous structure whereby excipients are added to enhance wicking/swelling action or provide strength to the fragile tablet framework. In this work, a systematic investigation comparing materials from two different categories was employed to understand their functionality in binary mixture tablets of the most commonly used diluent mannitol. Cellulose based excipients such as HPC (SSL-SFP), L-HPC (NBD-022) and MCC (Avicel PH-102) were compared with non-cellulosic materials such as PEO (POLYOX WSR N-10) and Crospovidone (XL-10). Pure excipient properties were studied using Heckel Plot, compressibility profile, SEM and XRPD, whereas the prepared binary mixture compacts were studied for hardness, disintegration time and friability. Results from our investigation provide insight into differences encountered in product performance of ODT upon inclusion of additional materials. For example, non-cellulosic excipients Polyox and Crospovidone showed higher plasticity (Py values 588 and 450MPa) in pure form but not in binary mixtures of mannitol. Cellulosic excipients, nonetheless, offer faster disintegration (<30 sec) specifically L-HPC and MCC tablets. Disintegration time for tablets with fully substituted-HPC was prolonged (200-500 sec) upon increasing concentration between 1-10% due to gelation/matrix formation. It can be concluded that despite the reasonably good plasticity of both cellulosic and non-cellulosic excipients in pure form, the mechanical strength in binary mixtures is negatively impacted by the fragmentation/fracture effect of mannitol. © 2014 Bentham Science Publishers.
Resumo:
Water is a common impurity of jet fuel, and can exist in three forms: dissolved in the fuel, as a suspension and as a distinct layer at the bottom of the fuel tank. Water cannot practically be eliminated from fuel but must be kept to a minimum as large quantities can cause engine problems, particularly when frozen, and the interface between water and fuel acts as a breeding ground for biological contaminants. The quantities of dissolved or suspended water are quite small, ranging from about 10 ppm to 150 ppm. This makes the measurement task difficult and there is currently a lack of a convenient, electrically passive system for water-in-fuel monitoring; instead the airlines rely on colorimetric spot tests or simply draining liquid from the bottom of fuel tanks. For all these reason, people have explored different ways to detect water in fuel, however all these approaches have problems, e.g. they may not be electrically passive or they may be sensitive to the refractive index of the fuel. In this paper, we present a simple, direct and sensitive approach involving the use of a polymer optical fibre Bragg grating to detect water in fuel. The principle is that poly(methyl methacrylate) (PMMA) can absorb moisture from its surroundings (up to 2% at 23 °C), leading to both a swelling of the material and an increase in refractive index with a consequent increase in the Bragg wavelength of a grating inscribed in the material.
Resumo:
The successful development of c ompressed ODTs utilises low compression force s to create a porous structure whereby excipients are added to enhance wicking/swelling action or p rovide strength to the fragile tablet framework. In this work, a systematic investigation comparing materials from two different categories was employed to understand their functionality in binary mixture tablets of the most commonly used diluent mannitol. Cellulose based excipients such as HPC (SSL-SFP), L-HPC (NBD -022) and MCC (Avicel PH -102 ) were compared with non -cellulosic materials such as PEO (POLYOX WSR N -10) and Crospovidone (XL -10). P ure excipient properties were studied using Heckel Plot, compre ssibility profile, SEM and XR PD, w hereas the prepared binary mixture compacts were studied for hardness, disintegration time and friability. Results from our investigation provide insight into differences encountered in product performance of ODT upon inclusion of additional materials. For example, non -cellulosic excipients Polyox and Crospovidone showed higher plasticity (Py values 588 and 450 MPa) in pure form but not in binary mixtures of mannitol . Cellulosic excipients, nonetheless, offer faster disintegration (
Resumo:
A pH-responsive ABA triblock copolymer, comprising poly(methyl methacrylate)-b/ock-poly(2-(diethylamino)ethyl methacrylate)-block-poly(methyl methacrylate) [PMMA-b-PDEA-b-PMMA], has been cast Into thin films with a well-defined microstructure. Small Angle X-ray Scattering (SAXS) and Atomic Force Microscopy (AFM) studies confirm that this copolymer forms a hydrogel consisting of PMMA spheres embedded within a polybase PDEA matrix, with the PMMA domains acting as physical cross-links. The hydrogel has a pH-reversible coil-globule transition at around pH 4.5. This responsive physical property was exploited by immersing a sample of copolymer hydrogel in an aqueous solution containing a cyclic pH-oscillating reaction, whereby the pH was continuously oscillated above and below the transition pH so as to induce autonomous volume transitions. The changes in microscopic and macroscopic length scales correlate closely during (de)swelling cycles, with affine behaviour occurring over five orders of magnitude. Copyright © 2007 WILEY-VCH Verlag GmbH & Co. KGaA,.
Resumo:
The humidity response of poly(methyl methacrylate) (PMMA)-based optical fiber Bragg gratings (POFBGs) has been studied. The characteristic wavelength of the grating is modulated by water absorption-induced swelling and refractive index change in the fiber. This work indicates that anisotropic expansion may exist in PMMA optical fiber, reducing the humidity responsivity of the grating and introducing uncertainty in the responsivity from fiber to fiber. By pre-straining a grating, one can get rid of this uncertainty and simultaneously improve the POFBG response time. © 2014 Optical Society of America.
Resumo:
We report results of an experimental study, complemented by detailed statistical analysis of the experimental data, on the development of a more effective control method of drug delivery using a pH sensitive acrylic polymer. New copolymers based on acrylic acid and fatty acid are constructed from dodecyl castor oil and a tercopolymer based on methyl methacrylate, acrylic acid and acryl amide were prepared using this new approach. Water swelling characteristics of fatty acid, acrylic acid copolymer and tercopolymer respectively in acid and alkali solutions have been studied by a step-change method. The antibiotic drug cephalosporin and paracetamol have also been incorporated into the polymer blend through dissolution with the release of the antibiotic drug being evaluated in bacterial stain media and buffer solution. Our results show that the rate of release of paracetamol getss affected by the pH factor and also by the nature of polymer blend. Our experimental data have later been statistically analyzed to quantify the precise nature of polymer decay rates on the pH density of the relevant polymer solvents. The time evolution of the polymer decay rates indicate a marked transition from a linear to a strictly non-linear regime depending on the whether the chosen sample is a general copolymer (linear) or a tercopolymer (non-linear). Non-linear data extrapolation techniques have been used to make probabilistic predictions about the variation in weight percentages of retained polymers at all future times, thereby quantifying the degree of efficacy of the new method of drug delivery.
Resumo:
Allergy is an overreaction by the immune system to a previously encountered, ordinarily harmless substance - typically proteins - resulting in skin rash, swelling of mucous membranes, sneezing or wheezing, or other abnormal conditions. The use of modified proteins is increasingly widespread: their presence in food, commercial products, such as washing powder, and medical therapeutics and diagnostics, makes predicting and identifying potential allergens a crucial societal issue. The prediction of allergens has been explored widely using bioinformatics, with many tools being developed in the last decade; many of these are freely available online. Here, we report a set of novel models for allergen prediction utilizing amino acid E-descriptors, auto- and cross-covariance transformation, and several machine learning methods for classification, including logistic regression (LR), decision tree (DT), naïve Bayes (NB), random forest (RF), multilayer perceptron (MLP) and k nearest neighbours (kNN). The best performing method was kNN with 85.3% accuracy at 5-fold cross-validation. The resulting model has been implemented in a revised version of the AllerTOP server (http://www.ddg-pharmfac.net/AllerTOP). © Springer-Verlag 2014.
Resumo:
Grewia gum was extracted from the inner stem bark of Grewia mollis and characterized by several techniques such as gas chromatography (GC), gel permeation chromatography (GPC), scanning electron microscopy (SEM), differential scanning calorimetry (DSC) and thermogravimetric analysis of the extracted sample. Spectroscopic techniques such as x-ray photoelectron spectroscopy (XPS), fourier-transformed infrared (FT-IR), solid-state nuclear magnetic resonance (NMR), and 1H and 13C NMR techniques were also used to characterize the gum. The results showed that grewia gum is a typically amorphous polysaccharide gum containing glucose, rhamnose, galactose, arabinose and xylose as neutral sugars. It has an average molecular weight of 5925 kDa expressed as the pullulan equivalent. The gum slowly hydrated in water, dispersing and swelling to form a highly viscous dispersion exhibiting pseudoplastic flow behaviour. The polysaccharide gum is thermally stable and may have application as stabilizer or suspending agent in foods, cosmetics and in pharmaceuticals. It may have application as a binder or sustained-release polymer matrix in tablets or granulations. © IPEC-Americas Inc.
Resumo:
It is estimated that 69-75 million people worldwide will suffer a traumatic brain injury (TBI) or stroke each year. Brain oedema caused by TBI or following a stroke, together with other disorders of the brain cost Europe €770 billion in 2014. Aquaporins (AQP) are transmembrane water channels involved in many physiologies and are responsible for the maintenance of water homeostasis. They react rapidly to changes in osmolarity by transporting water through their highly selective central pore to maintain tonicity and aid in cell volume regulation. We have previously shown that recombinant AQP1-GFP trafficking occurs in a proteinkinase C-microtubule dependant manner in HEK-293 cells in response to hypotonicity. This trafficking mechanism is also reliant on the presence of calcium and its messenger-binding protein calmodulin and results in increased cell surface expression of AQP1 in a time-scale of ~30 seconds. There is currently very little research into the trafficking mechanisms of endogenous AQPs in primary cells. AQP4 is the most abundantly expressed AQP within the brain, it is localised to the astrocytic end-feet, in contact with the blood vessels at the blood-brain-barrier. In situations where the exquisitely-tuned osmotic balance is disturbed, high water permeability can become detrimental. AQP4-mediated water influx causes rapid brain swelling, resulting in death or long term brain damage. Previous research has shown that AQP4 knock-out mice were protected from the formation of cytotoxic brain oedema in a stroke model, highlighting AQP4 as a key drug target for this pathology. As there are currently no treatments available to restrict the flow of water through AQP4 as all known inhibitors are either cytotoxic or non-specific, controlling the mechanisms involved in the regulation of AQP4 in the brain could provide a therapeutic solution to such diseases. Using cell surface biontinylation of endogenous AQP4 in primary rat astrocytes followed by neutraavidin based ELISA we have shown that AQP4 cell surface localisation increases by 2.7 fold after 5 minutes hypotonic treatment at around 85 mOsm/kg H2O. We have also shown that this rapid relocalisation of AQP4 is regulated by PKA, calmodulin, extra-cellular calcium and actin. In summary we have shown that rapid translocation of endogenous AQP4 occurs in primary rat astrocytes in response to hypotonic stimuli; this mechanism is PKA, calcium, actin and calmodulin dependant. AQP4 has the potential to provide a treatment for the development of brain oedema.
Resumo:
Coral reefs are in decline worldwide and coral disease is a significant contributing factor. However, etiologies of coral diseases are still not well understood. In contrast with the Caribbean, extremely little is known about coral diseases in the Philippines. In 2005, off Southeast Negros Island, Philippines, I investigated relationships between environmental parameters and prevalence of the two most common coral diseases, ulcerative white spot (UWS) and massive Porites growth anomalies (MPGAs). Samples were collected along a disease prevalence gradient 40.5 km long. Principal component analyses showed prevalence of MPGAs was positively correlated with water column nitrogen, organic carbon of surface sediments, and colony density. UWS was positively correlated with water column phosphorus. This is the first quantitative evidence linking anthropogenically-impacted water and sediment to a higher prevalence of these diseases. Histological and cytological alterations were investigated by comparing tissues from two distinct types of MPGA lesions (types 1 and 2) and healthy coral using light and electron microscopy. Skeletal abnormalities and sloughing, swelling, thinning, and loss of tissues in MPGAs resembled tissues exposed to bacterial or fungal toxins. Both lesion types had decreases in symbiotic zooxanthellae, which supply nutrients to corals. Notable alterations included migrations of chromophore cells (amoebocytes) (1) nocturnally to outer epithelia to perform wound-healing, including plugging gaps and secreting melanin in degraded tissues, and (2) diurnally to the interior of the tissue possibly to prevent shading zooxanthellae in order to maximize photosynthate production. Depletion of melanin (active in wound healing) in type 2 lesions suggested type 2 tissues were overtaxed and less stable. MPGAs contained an abundance of endolithic fungi and virus-like particles, which may result from higher nutrient levels and play roles in disease development. Swollen cells and mucus frequently blocked gastrovascular canals (GVCs) in MPGAs. Type 1 lesions appeared to compensate for impeded flow of wastes and nutrients through these canals with proliferation of new GVCs, which were responsible for the observed thickened tissues. In contrast, type 2 tissues were thin and more degraded. Dysplasia and putative neoplasia were also observed in MPGAs which may result from the tissue regeneration capacity being overwhelmed.