919 resultados para SUBMARINE GROUNDWATER DISCHARGE
Resumo:
A simple self–contained theory is proposed for describing life cycles of convective systems as a discharge–recharge process. A closed description is derived for the dynamics of an ensemble of convective plumes based on an energy cycle. The system consists of prognostic equations for the cloud work function and the convective kinetic energy. The system can be closed by intro ducing a functional relationship between the convective kinetic energy and the cloud–base mass flux. The behaviour of this system is considered under a bulk simplification. Previous cloud–resolving mo delling as well as bulk statistical theories for ensemble convective systems suggest that a plausible relationship would be to assume that the convective kinetic energy is linearly proportional to the cloud–base mass flux. As a result, the system reduces to a nonlinear dynamical system with two dependent variables, the cloud–base mass flux and the cloud work function. The fully nonlinear solution of this system always represents a periodic cycle regardless of the initial condition under constant large–scale forcing. Importantly, the inclusion of energy dissipation in this model does not in itself lead the system to an equilibrium.
Resumo:
The formation of novel structures by the passage of an electric current through graphite is described. These structures apparently consist of hollow three-dimensional graphitic shells bounded by curved and faceted planes, typically made up of two graphene layers. The curved structures were frequently decorated with nano-scale carbon particles, or short nanotubes. In some cases, nanotubes were found to be seamlessly connected to the thin shells, indicating that the formation of the shells and the nanotubes is intimately connected. Small nanotubes or nanoparticles were also sometimes found encapsulated inside the hollow structures, while fullerene-like particles were often seen attached to the outside surfaces. With their high surface areas and structural perfection, the new carbon structures may have applications as anodes of lithium ion batteries or as components of composite materials.
Resumo:
Peat soils consist of poorly decomposed plant detritus, preserved by low decay rates, and deep peat deposits are globally significant stores in the carbon cycle. High water tables and low soil temperatures are commonly held to be the primary reasons for low peat decay rates. However, recent studies suggest a thermodynamic limit to peat decay, whereby the slow turnover of peat soil pore water may lead to high concentrations of phenols and dissolved inorganic carbon. In sufficient concentrations, these chemicals may slow or even halt microbial respiration, providing a negative feedback to peat decay. We document the analysis of a simple, one-dimensional theoretical model of peatland pore water residence time distributions (RTDs). The model suggests that broader, thicker peatlands may be more resilient to rapid decay caused by climate change because of slow pore water turnover in deep layers. Even shallow peat deposits may also be resilient to rapid decay if rainfall rates are low. However, the model suggests that even thick peatlands may be vulnerable to rapid decay under prolonged high rainfall rates, which may act to flush pore water with fresh rainwater. We also used the model to illustrate a particular limitation of the diplotelmic (i.e., acrotelm and catotelm) model of peatland structure. Model peatlands of contrasting hydraulic structure exhibited identical water tables but contrasting RTDs. These scenarios would be treated identically by diplotelmic models, although the thermodynamic limit suggests contrasting decay regimes. We therefore conclude that the diplotelmic model be discarded in favor of model schemes that consider continuous variation in peat properties and processes.
Resumo:
Measurements of atmospheric corona currents have been made for over 100 years to indicate the atmospheric electric field. Corona currents vary substantially, in polarity and in magnitude. The instrument described here uses a sharp point sensor connected to a temperature compensated bi-polar logarithmic current amplifier. Calibrations over a range of currents from ±10 fA to ±3 μA and across ±20 ◦C show it has an excellent logarithmic response over six orders of magnitude from 1 pA to 1 μA in both polarities for the range of atmospheric temperatures likely to be encountered in the southern UK. Comparison with atmospheric electric field measurements during disturbed weather confirms that bipolar electric fields induce corona currents of corresponding sign, with magnitudes ∼0.5 μA.
Resumo:
In this study, change in rainfall, temperature and river discharge are analysed over the last three decades in Central Vietnam. Trends and rainfall indices are evaluated using non-parametric tests at different temporal levels. To overcome the sparse locally available network, the high resolution APHRODITE gridded dataset is used in addition to the existing rain gauges. Finally, existing linkages between discharge changes and trends in rainfall and temperature are explored. Results are indicative of an intensification of rainfall (+15%/decade), with more extreme and longer events. A significant increase in winter rainfall and a decrease in consecutive dry days provides strong evidence for a lengthening wet season in Central Vietnam. In addition, trends based on APHRODITE suggest a strong orographic signal in winter and annual trends. These results underline the local variability in the impacts of climatic change at the global scale. Consequently, it is important that change detection investigations are conducted at the local scale. A very weak signal is detected in the trend of minimum temperature (+0.2°C/decade). River discharge trends show an increase in mean discharge (31 to 35%/decade) over the last decades. Between 54 and 74% of this increase is explained by the increase in precipitation. The maximum discharge also responds significantly to precipitation changes leading to a lengthened wet season and an increase in extreme rainfall events. Such trends can be linked with a likely increase in floods in Central Vietnam, which is important for future adaptation planning and management and flood preparedness in the region. Copyright © 2012 John Wiley & Sons, Ltd.
Resumo:
A new form of carbon is described, which consists of hollow, three-dimensional shells bounded by bilayer graphene. The new carbon is produced very simply, by passing a current through graphite rods in a commercial arc-evaporation unit. Characterisation of the carbon using high resolution transmission electron microscopy is described, and the possible formation mechanism discussed.
Resumo:
Background In the UK occupational therapy pre-discharge home visits are routinely carried out as a means of facilitating safe transfer from the hospital to home. Whilst they are an integral part of practice, there is little evidence to demonstrate they have a positive outcome on the discharge process. Current issues for patients are around the speed of home visits and the lack of shared decision making in the process, resulting in less than 50 % of the specialist equipment installed actually being used by patients on follow-up. To improve practice there is an urgent need to examine other ways of conducting home visits to facilitate safe discharge. We believe that Computerised 3D Interior Design Applications (CIDAs) could be a means to support more efficient, effective and collaborative practice. A previous study explored practitioners perceptions of using CIDAs; however it is important to ascertain older adult’s views about the usability of technology and to compare findings. This study explores the perceptions of community dwelling older adults with regards to adopting and using CIDAs as an assistive tool for the home adaptations process. Methods Ten community dwelling older adults participated in individual interactive task-focused usability sessions with a customised CIDA, utilising the think-aloud protocol and individual semi-structured interviews. Template analysis was used to carry out both deductive and inductive analysis of the think-aloud and interview data. Initially, a deductive stance was adopted, using the three pre-determined high-level themes of the technology acceptance model (TAM): Perceived Usefulness (PU), Perceived Ease of Use (PEOU), Actual Use (AU). Inductive template analysis was then carried out on the data within these themes, from which a number of sub-thmes emerged. Results Regarding PU, participants believed CIDAs served as a useful visual tool and saw clear potential to facilitate shared understanding and partnership in care delivery. For PEOU, participants were able to create 3D home environments however a number of usability issues must still be addressed. The AU theme revealed the most likely usage scenario would be collaborative involving both patient and practitioner, as many participants did not feel confident or see sufficient value in using the application autonomously. Conclusions This research found that older adults perceived that CIDAs were likely to serve as a valuable tool which facilitates and enhances levels of patient/practitioner collaboration and empowerment. Older adults also suggested a redesign of the interface so that less sophisticated dexterity and motor functions are required. However, older adults were not confident, or did not see sufficient value in using the application autonomously. Future research is needed to further customise the CIDA software, in line with the outcomes of this study, and to explore the potential of collaborative application patient/practitioner-based deployment.
Resumo:
Global climate changes during the Cenozoic (65.5–0 Ma) caused major biological range shifts and extinctions. In northern Europe, for example, a pattern of few endemics and the dominance of wide-ranging species is thought to have been determined by the Pleistocene (2.59–0.01 Ma) glaciations. This study, in contrast, reveals an ancient subsurface fauna endemic to Britain and Ireland. Using a Bayesian phylogenetic approach, we found that two species of stygobitic invertebrates (genus Niphargus) have not only survived the entire Pleistocene in refugia but have persisted for at least 19.5 million years. Other Niphargus species form distinct cryptic taxa that diverged from their nearest continental relative between 5.6 and 1.0 Ma. The study also reveals an unusual biogeographical pattern in the Niphargus genus. It originated in north-west Europe approximately 87 Ma and underwent a gradual range expansion. Phylogenetic diversity and species age are highest in north-west Europe, suggesting resilience to extreme climate change and strongly contrasting the patterns seen in surface fauna. However, species diversity is highest in south-east Europe, indicating that once the genus spread to these areas (approximately 25 Ma), geomorphological and climatic conditions enabled much higher diversification. Our study highlights that groundwater ecosystems provide an important contribution to biodiversity and offers insight into the interactions between biological and climatic processes.
Resumo:
The assembling of a system for field sampling and activity concentration measurement of radon dissolved in groundwater is described. Special attention is given in presenting the calibration procedure to obtain the radon activity concentration in groundwater from the raw counting rate registered in a portable scintillation detector and in establishing the precision of the activity concentration measurements. A field procedure was established and the system tested during one year of monthly observations of (222)Rn activity concentration in groundwater drawn from two wells drilled on metamorphic rocks exposed at Eastern Sao Paulo State, Brazil. The observed mean (222)Rn activity concentrations are 374 Bq/dm(3) in one well and about 1275 Bq/dm(3) in the other one. In both wells the (222)Rn activity concentrations showed a seasonal variation similar to variations previously reported in the literature for the same region. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Gordonia polyisoprenivorans CCT 7137 was isolated from groundwater contaminated with leachate in an old controlled landfill (Sauo Paulo, Brazil), and cultured in GYM medium at different concentrations of sugarcane molasses (2%, 6%, and 10%). The strain growth was analyzed by monitoring the viable cell counts (c.f.u. mL(-1)) and optical density and EPS production was evaluated at the end of the exponential phase and 24 h after it. The analysis of the viable cell counts showed that the medium that most favored bacterial growth was not the one that favored EPS production. The control medium (GYM) was the one that most favored the strain growth, at the maximum specific growth rate of 0.232 h(-1). Differences in bacterial growth when cultured at three different concentrations of molasses were not observed. Production of EPS, in all culture media used, began during the exponential phase and continued during the growth stationary phase. The highest total EPS production, after 24 h of stationary phase, was observed in 6% molasses medium (172.86 g L(-1)) and 10% (139.47 g L(-1)) and the specific total EPS production was higher in 10% molasses medium (39.03 x10(-11)g c.f.u.(-1)). After the exponential phase, in 2%, 6%, and 10% molasses media, a higher percentage of free exopolysaccharides (EPS) was observed, representing 88.4%, 62.4%, and 64.2% of the total, respectively. A different result was observed in pattern medium, which presented EPS made up of higher percentage of capsular EPS (66.4% of the total). This work is the first study on EPS production by G. polyisoprenivorans strain in GYM medium and in medium utilizing sugarcane molasses as the sole nutrient source and suggests its potential use for EPS production by G. polyisoprenivorans CCT 7137 aiming at application in biotechnological processes.
Resumo:
This paper presents the groundwater favorability mapping on a fractured terrain in the eastern portion of Sao Paulo State, Brazil. Remote sensing, airborne geophysical data, photogeologic interpretation, geologic and geomorphologic maps and geographic information system (GIS) techniques have been used. The results of cross-tabulation between these maps and well yield data allowed groundwater prospective parameters in a fractured-bedrock aquifer. These prospective parameters are the base for the favorability analysis whose principle is based on the knowledge-driven method. The mutticriteria analysis (weighted linear combination) was carried out to give a groundwater favorabitity map, because the prospective parameters have different weights of importance and different classes of each parameter. The groundwater favorability map was tested by cross-tabulation with new well yield data and spring occurrence. The wells with the highest values of productivity, as well as all the springs occurrence are situated in the excellent and good favorabitity mapped areas. It shows good coherence between the prospective parameters and the well yield and the importance of GIS techniques for definition of target areas for detail study and wells location. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
Anomalous concentrations of fluoride in groundwater were identified in 19 drilling wells in the Salto-Indaiatuba region, Sao Paulo State, with an average concentration of 3.03 mg dm(-3) and a maximum of 6.95 mg dm(-3), which constitute a restriction for the water`s usage in terms of human consumption. The wells exploit water from the Tubarao Aquifer (sedimentary, granular) and Crystalline Aquifer (granitic, fractured), used for sanitary or industrial purposes. These groundwaters are typically HCO(3) and HCO(3)-SO(4) types, with high concentrations of HCO(3) -and Na(+) and high pH-values between 7.5 and 10.0. The highest concentrations of F-are associated to the Tubarao and Tubarao/Crystalline aquifer drilling wells. The presence of F-in groundwater is controlled by these high pH-values, alkalinity, and fluorine availability. The source of fluoride in the Tubarao and Crystalline Aquifers can be related to the percolation of hydrothermal fluids associated with Mesozoic lava flow, emplaced due to the opening of Atlantic Ocean and/or hydrolysis of fluorine-rich minerals and clay minerals.