961 resultados para STROKE VOLUME VARIATION


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The discrepancy between the X-ray and NMR structures of Mycobacterium tuberculosis peptidyl-tRNA hydrolase in relation to the functionally important plasticity of the molecule led to molecular dynamics simulations. The X-ray and the NMR studies along with the simulations indicated an inverse correlation between crowding and molecular volume. A detailed comparison of proteins for which X-ray and the NMR structures appears to confirm this correlation. In consonance with the reported results of the investigations in cellular compartments and aqueous solution, the comparison indicates that the crowding results in compaction of the molecule as well as change in its shape, which could specifically involve regions of the molecule important in function. Crowding could thus influence the action of proteins through modulation of the functionally important plasticity of the molecule. Selvaraj M, Ahmad R, Varshney U and Vijayan M 2012 Crowding, molecular volume and plasticity: An assessment involving crystallography, NMR and simulations. J. Biosci. 37 953-963] DOI 10.1007/s12038-012-9276-5

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nano-indentation studies have been undertaken on bulk Ge15Te85-xSix glasses (0 <= x <= 9), to estimate hardness, H and elastic modulus, E. It is found that E and H increase initially with the increase in the atomic percent of Si. Further, a plateau is seen in the composition dependence of E and H in the composition range 2 <= x <= 6. It is also seen that the addition of up to 2 at% Si increases the density rho of the glass considerably; however, further additions of Si lead to a near linear reduction in rho, in the range 2 <= x <= 6. Beyond x=6, rho increases again with Si content. The variation of molar volume V-m brings out a more fascinating picture. A plateau is seen in the intermediate phase suggesting that the molecular structure of the glasses is adapting to keep the count of constraints fixed in this particular phase. The observed variations in mechanical properties are associated with the Boolchand's intermediate phase in the present glassy system, in the composition range 2 <= x <= 6, suggested earlier from calorimetric and electrical switching studies. The present results reveal rather directly the existence of the intermediate phase in elastic and plastic properties of chalcogenide glasses. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Social insects are characterized by reproductive caste differentiation of colony members into one or a small number of fertile queens and a large number of sterile workers. The evolutionary origin and maintenance of such sterile workers remains an enduring puzzle in insect sociobiology. Here, we studied ovarian development in over 600 freshly eclosed, isolated, virgin female Ropalidia marginata wasps, maintained in the laboratory. The wasps differed greatly both in the time taken to develop their ovaries and in the magnitude of ovarian development despite having similar access to resources. All females started with no ovarian development at day zero, and the percentage of individuals with at least one oocyte at any stage of development increased gradually across age, reached 100% at 100. days and decreased slightly thereafter. Approximately 40% of the females failed to develop ovaries within the average ecological lifespan of the species. Age, body size and adult feeding rate, when considered together, were the most important factors governing ovarian development. We suggest that such flexibility and variation in the potential and timing of reproductive development may physiologically predispose females to accept worker roles and thus provide a gateway to worker ontogeny and the evolution of sociality.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this article, we investigate the performance of a volume integral equation code on BlueGene/L system. Volume integral equation (VIE) is solved for homogeneous and inhomogeneous dielectric objects for radar cross section (RCS) calculation in a highly parallel environment. Pulse basis functions and point matching technique is used to convert the volume integral equation into a set of simultaneous linear equations and is solved using parallel numerical library ScaLAPACK on IBM's distributed-memory supercomputer BlueGene/L by different number of processors to compare the speed-up and test the scalability of the code.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

With the advances of techniques for RCS reduction, it has become practical to develop aircraft which are invisible to modern day radars. In order to detect such low visible targets it is necessary to explore other phenomenon that contributes to the scattering of incident electromagnetic wave. It is well known from the developments from the clear air scattering using RASS induced acoustic wave could be used to create dielectric constant fluctuation. The scattering from these fluctuations rather than from the aircraft have been observed to enhance the RCS of clear air, under the condition when the incident EM wave is half of the acoustic wave, the condition of Bragg scattering would be met and RCS would be enhanced. For detecting low visibility targets which are at significant distance away from the main radar, inducement of EM fluctuation from acoustic source collocated with the acoustic source is infeasible. However the flow past aircraft produces acoustic disturbances around the aircraft can be exploited to detect low visibility targets. In this paper numerical simulation for RCS enhancement due to acoustic disturbances is presented. In effect, this requires the solution of scattering from 3D inhomogeneous complex shaped bodies. In this volume surface integral equation (VSIE) is used to compute the RCS from fluctuation introduced through the acoustic disturbances. Though the technique developed can be used to study the scattering from radars of any shape and acoustic disturbances of any shape. For illustrative condition, enhancement due to the Bragg scattering are shown to improve the RCS by nearly 30dB, for air synthetic sinusoidal acoustic variation profile for a spherical scattering volume

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Constant stress accelerated ageing experiments were conducted on unfilled epoxy and epoxy alumina nanocomposites with different filler loadings of 0.1, 1 and 5 wt%. Electrical (6 kV/mm), thermal (60 degrees C) and combined electrothermal (6 kV/mm and 60 degrees C) ageing experiments were performed for a duration of 250 h. The leakage current through the samples were continuously monitored and the variation in the tan delta values with ageing duration was also monitored. It was observed that the increase in the tan delta value with ageing duration was less for the epoxy alumina nanocomposites as compared to the unfilled epoxy. Dielectric spectroscopy measurements were performed on the samples before and after the ageing in the frequency range of 10(-2) to 10(6) Hz. The permittivity and tan delta values were found to increase in the low frequency range. The volume resistivity of unfilled epoxy and epoxy alumina nanocomposites were also measured before and after the ageing. The volume resistivity improved marginally for the thermally aged samples, but reduced for the electrically aged and the electrothermally aged samples. The decrease in the value of volume resistivity was more for the multistress aged unfilled epoxy samples as compared to the multistress aged epoxy alumina nanocomposites. It was also observed that the unfilled epoxy samples having a higher value of tan delta failed first. The time to failure of the samples showed an increasing trend with an increase in the nano filler loading of epoxy alumina nanocomposites.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Laminar two-dimensional sudden expansion flow of different nanofluids is studied numerically. The governing equations are solved using stream function-vorticity method. The effect of volume fraction of the nanoparticles and type of nanoparticles on flow behaviour is examined and found significant impact. The flow response to Reynolds number in the presence of nanoparticles is examined. The presence of nanoparticles decreases the flow bifurcation Reynolds number. The size and the reattachment length of the bottom wall recirculation increase with increasing volume fraction and particle density. The effect of volume fraction and density of nanoparticles on friction factor is reported. The bottom wall recirculation strongly respond to the variation in volume faction and type of particles. However, weak response is observed for top wall recirculation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A methodology for measurement of planar liquid volume fraction in dense sprays using a combination of Planar Laser-Induced Fluorescence (PLIF) and Particle/Droplet Imaging Analysis (PDIA) is presented in this work. The PLIF images are corrected for loss of signal intensity due to laser sheet scattering, absorption and auto-absorption. The key aspect of this work pertains to simultaneously solving the equations involving the corrected PLIF signal and liquid volume fraction. From this, a quantitative estimate of the planar liquid volume fraction is obtained. The corrected PLIF signal and the corrected planar Mie scattering can be also used together to obtain the Sauter Mean Diameter (SMD) distribution by using data from the PDIA technique at a particular location for calibration. This methodology is applied to non-evaporating sprays of diesel and a more viscous pure plant oil at an injection pressure of 1000 bar and a gas pressure of 30 bar in a high pressure chamber. These two fuels are selected since their viscosity values are very different with a consequently very different spray structure. The spatial distribution of liquid volume fraction and SMD is obtained for two fuels. The proposed method is validated by comparing liquid volume fraction obtained by the current method with data from PDIA technique. (C) 2012 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The telecommunication, broadcasting and other instrumented towers carry power and/or signal cables from their ground end to their upper regions. During a direct hit to the tower, significant induction can occur to these mounted cables. In order to provide adequate protection to the equipments connected to them, protection schemes have been evolved in the literature. Development of more effective protection schemes requires a quantitative knowledge on various parameters. However, such quantitative knowledge is difficult to find at present. Amongst several of these aspects, the present work aims to investigate on the two important aspects: (i) what would be the nature of the induced currents and (ii) what will be the current sharing if as per the practice, the sheath of the cable is connected to the down conductor/tower. These aspects will be useful in design of protection schemes and also in analyzing the field structure around instrumented towers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The classical Chapman-Enskog expansion is performed for the recently proposed finite-volume formulation of lattice Boltzmann equation (LBE) method D.V. Patil, K.N. Lakshmisha, Finite volume TVD formulation of lattice Boltzmann simulation on unstructured mesh, J. Comput. Phys. 228 (2009) 5262-5279]. First, a modified partial differential equation is derived from a numerical approximation of the discrete Boltzmann equation. Then, the multi-scale, small parameter expansion is followed to recover the continuity and the Navier-Stokes (NS) equations with additional error terms. The expression for apparent value of the kinematic viscosity is derived for finite-volume formulation under certain assumptions. The attenuation of a shear wave, Taylor-Green vortex flow and driven channel flow are studied to analyze the apparent viscosity relation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Plants produce volatile organic compounds (VOCs) in a variety of contexts that include response to abiotic and biotic stresses, attraction of pollinators and parasitoids, and repulsion of herbivores. Some of these VOCs may also exhibit diel variation in emission. In Ficus racemosa, we examined variation in VOCs released by fig syconia throughout syconium development and between day and night. Syconia are globular enclosed inflorescences that serve as developing nurseries for pollinating and parasitic fig wasps. Syconia are attacked by gallers early in their development, serviced by pollinators in mid phase, and are attractive to parasitoids in response to the development of gallers at later stages. VOC bouquets of the different development phases of the syconium were distinctive, as were their day and night VOC profiles. VOCs such as alpha-muurolene were characteristic of the pollen-receptive diurnal phase, and may serve to attract the diurnally-active pollinating wasps. Diel patterns of release of volatiles could not be correlated with their predicted volatility as determined by Henry's law constants at ambient temperatures. Therefore, factors other than Henry's law constant such as stomatal conductance or VOC synthesis must explain diel variation in VOC emission. A novel use of weighted gene co-expression network analysis (WGCNA) on the volatilome resulted in seven distinct modules of co-emitted VOCs that could be interpreted on the basis of syconium ecology. Some modules were characterized by the response of fig syconia to early galling by parasitic wasps and consisted largely of green leaf volatiles (GLVs). Other modules, that could be characterized by a combination of syconia response to oviposition and tissue feeding by larvae of herbivorous galler pollinators as well as of parasitized wasps, consisted largely of putative herbivore-induced plant volatiles (HIPVs). We demonstrated the usefulness of WGCNA analysis of the volatilome in making sense of the scents produced by the syconia at different stages and diel phases of their development.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

CoFe2O4 nanoparticles were prepared by solution combustion method. The nanoparticle are characterized by powder X-ray diffraction (PXRD), Fourier transform infrared spectroscopy and scanning electron microscopy (SEM). PXRD reveals single phase, cubic spinel structure with Fd (3) over barm (227) space group. SEM micrograph shows the particles are agglomerated and porous in nature. Electron paramagnetic resonance spectrum exhibits a broad resonance signal g=2.150 and is attributed to super exchange between Fe3+ and Co2+. Magnetization values of CoFe2O4 nanoparticle are lower when compared to the literature values of bulk samples. This can be attributed to the surface spin canting due to large surface-to-volume ratio for a nanoscale system. The variation of dielectric constant, dielectric loss, loss tangent and AC conductivity of as-synthesized nano CoFe2O4 particles at room temperature as a function of frequency has been studied. The magnetic and dielectric properties of the samples show that they are suitable for electronic and biomedical applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The pressure dependences of Cl-35 nuclear quadrupole resonance (NQR) frequency, temperature and pressure variation of spin lattice relaxation time (T-1) were investigated in 3,4-dichlorophenol. T-1 was measured in the temperature range 77-300 K. Furthermore, the NQR frequency and T-1 for these compounds were measured as a function of pressure up to 5 kbar at 300 K. The temperature dependence of the average torsional lifetimes of the molecules and the transition probabilities W-1 and W-2 for the Delta m = +/- 1 and Delta m = +/- 2 transitions were also obtained. A nonlinear variation of NQR frequency with pressure has been observed and the pressure coefficients were observed to be positive. A thermodynamic analysis of the data was carried out to determine the constant volume temperature coefficients of the NQR frequency. An attempt is made to compare the torsional frequencies evaluated from NQR data with those obtained by IR spectra. On selecting the appropriate mode from IR spectra, a good agreement with torsional frequency obtained from NQR data is observed. The previously mentioned approach is a good illustration of the supplementary nature of the data from IR studies, in relation to NQR studies of compounds in solid state.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Microstructural changes of Ni-rich NiTi shape memory alloy during thermal and thermo-mechanical cycling have been investigated using Electron Back Scattered Diffraction. A strong dependence of the orientation of the prior austenite grain on the misorientation development has been observed during thermal cycling and thermo-mechanical cycling. This effect is more pronounced at the grain boundaries compared to grain interior. At a larger applied strain, the volume fraction of stabilized martensite phase increases with increase in the number of cycling. Deformation within the martensite leads to stabilization of martensitic phase even at temperatures slightly above the austenite finish temperature. Modulus variation with respect to temperature has been explained on the basis of martensitic transformation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We discuss experimental results on the ability to significantly tune the photoluminescence decay rates of CdSe quantum dots embedded in an ordered template, using lightly doped small gold nanoparticles (nano-antennae), of relatively low optical efficiency. We observe both enhancement and quenching of photoluminescence intensity of the quantum dots varying monotonically with increasing volume fraction of added gold nanoparticles, with respect to undoped quantum dot arrays. However, the corresponding variation in lifetime of photoluminescence spectra decay shows a hitherto unobserved, non-monotonic variation with gold nanoparticle doping. We also demonstrate that Purcell effect is quite effective for the larger (5 nm) gold nano-antenna leading to more than four times enhanced radiative rate at spectral resonance, for largest doping and about 1.75 times enhancement for off-resonance. Significantly for spectral off-resonance samples, we could simultaneously engineer reduction of non-radiative decay rate along with increase of radiative decay rate. Non-radiative decay dominates the system for the smaller (2 nm) gold nano-antenna setting the limit on how small these plasmonic nano-antennae could be to be effective in engineering significant enhancement in radiative decay rate and, hence, the overall quantum efficiency of quantum dot based hybrid photonic assemblies.