994 resultados para SINGLE-CRYSTALLINE


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Single-wall carbon nanotubes (SWNTs) are fascinating systems exhibiting many novel physical properties. In this paper, we give a brief review of the structural, electronic, vibrational, and mechanical properties of carbon nanotubes. In situ resonance Raman scattering of SWNTs investigated under electrochemical biasing demonstrates that the intensity of the radial breathing mode varies significantly in a nonmonotonic manner as a function of the cathodic bias voltage, but does not change appreciably under anodic bias. These results can be quantitatively understood in terms of the changes in the energy gaps between the 1 D van Hove singularities in the electron density of states, arising possibly due to the alterations in the overlap integral of pi bonds between the p-orbitals of the adjacent carbon atoms. In the second part of this paper, we review our high-pressure X-ray diffraction results, which show that the triangular lattice of the carbon nanotube bundles continues to persist up to similar to10 GPa. The lattice is seen to relax just before the phase transformation, which is observed at similar to10 GPa. Further, our results display the reversibility of the 2D lattice symmetry even after compression up to 13 GPa well beyond the 5 GPa value observed recently. These experimental results explicitly validate the predicted remarkable mechanical resilience of the nanotubes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The nonequilibrium dynamical behaviour that arises when two ordered two-dimensional monolayers of particles are sheared over each other is studied in Brownian dynamics simulations. A curious sequence of nonequilibrium states is observed as the driving rate is increased, the most striking of which is a sliding state with irregular alternation between disordered and ordered states. We comment on possible mechanisms underlying these cycles, and experiments that could observe them.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Crystallization behaviors of the glass with a composition of 25Li(2)O.25B(2)O(3).50GeO(2) corresponding to lithium borogermanate LiBGeO4 have been examined. It has been confirmed that the LiBGeO4 crystalline phase is formed at the surface of heat-treated glasses. The second harmonic (SH) generation is found from transparent surface crystallized glasses, demonstrating for the first time that the LiBGeO4 phase shows optical nonlinearity. The SH intensity of LiBGeO4 crystallites (powdered state) prepared through crystallization is about ten times as large as that of pulverized alpha-quartz. The SH intensity of transparent crystallized glasses (bulk state) with crystalline layers of 3-4.5 mum thickness increases with increasing heat treatment temperature (540-560degreesC) and time (1-6 h), and the maximum SH intensity among the samples studied is in the order of 1/10 in comparison with that of alpha-quartz single crystal. The transparent crystallized glass obtained by heat treatment at 550alphaC for 3 h exhibits a clear and fine Maker fringe pattern, indicating a highly orientation of LiBGeO4 crystals at the surface.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Addition of a small amount of coumarin during crystallization produces new polymorphic modifications in 4-styrylcoumarin and 4-(3-fluorostyryl)coumarin, which are photolabile. Interestingly, upon irradiation polymorphic modification of 4-(3-fluorostyryl)coumarin produces a mirror-symmetric photodimer in contrast to the centrosymmetric photodimer obtained without addition of coumarin during crystallization.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Glycine Phosphite [NH3CH2COOH3PO3], abbreviated as GPI, undergoes a para-ferroelectric phase transition from the monoclinic symmetry P2(1)/a to P2(1) at 224.7 K. We report here a systematic study of the polarization switching process in this crystal. Growth of these crystals from aqueous solution has been undertaken employing both solvent evaporation and slow cooling methods. Hysteresis loop measurements along the polar b-axis yielded a spontaneous polarization value of 0.5 muC/cm(2) and a coercive field of 2.5 kV/cm. Conventional Merz technique was employed for polarization switching studies, wherein bipolar square pulses were applied to the sample to induce domain reversal. The transient switching pulse that flows through the sample on application of the field was recorded. The maximum switching time required for domain switching was measured both as a function of electric field and temperature. The experimentally observed switching curves were fitted with the model based on the Pulvari-Kuebler theory of nucleation and growth of domains. From the experimental data, the values of mobility and activation field were obtained. It was observed that switching process in this crystal is predominantly governed by the forward growth of domain walls in the high field region. However, switching process in GPI crystal was found to be slower than that found in other glycine based ferroelectric crystals.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Single crystals of a recent ferroelectric material, glycine phosphite were grown from aqueous solution employing the techniques of slow cooling and controlled evaporation. Powder X-ray diffraction studies as well as thermal analysis were carried out on the grown crystals. The morphology of the crystal has been determined using contact and optical goniometry. The mechanical hardness of the crystal was evaluated by Vickers indentation method. Thickness dependence of the dielectric properties has been investigated and the results can be interpreted in terms of a surface layer of lower dielectric constant.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work, the effect of lattice orientation on the fields prevailing near a notch tip is investigated pertaining to various constraint levels in FCC single crystals. A modified boundary layer formulation is employed and numerical solutions under mode I, plane strain conditions are generated by assuming an elastic-perfectly plastic FCC single crystal. The analysis is carried out corresponding to different lattice orientations with respect to the notch line. It is found that the near-tip deformation field, especially the development of kink or slip shear bands is sensitive to the constraint level. The stress distribution and the size and shape of the plastic zone near the notch tip are also strongly influenced by the level of T-stress. The present results clearly establish that ductile single crystal fracture geometries would progressively lose crack tip constraint as the T-stress becomes more negative irrespective of lattice orientation. Also, the near-tip field for a range of constraint levels can be characterized by two-parameters such as K-T or J-Q as in isotropic plastic solids.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Single crystals of a-hopeite exhibiting high transparency were grown by single diffusion gel growth technique. Single crystal X-ray diffraction analysis reveals that the crystal belongs to orthorhombic system. The values of several structural and physical parameters have been determined for the grown crystal. The optical absorption study reveals the transparency of the crystal and is noticed in the entire visible region and the cut-off wavelength was found to be 230 nm. The optical band gap found to be at 3.25 eV. The dependence of extinction co-efficient (k) and the refractive index (n) on the wavelength was also shown. The dielectric constant and dielectric loss of the crystal was studied as a function of frequency and temperature. Transport properties of the grown crystal have been studied from the Cole-Cole plot. (C) 2010 Elsevier GmbH. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We generalized the Enskog theory originally developed for the hard-sphere fluid to fluids with continuous potentials, such as the Lennard–Jones. We derived the expression for the k and ω dependent transport coefficient matrix which enables us to calculate the transport coefficients for arbitrary length and time scales. Our results reduce to the conventional Chapman–Enskog expression in the low density limit and to the conventional k dependent Enskog theory in the hard-sphere limit. As examples, the self-diffusion of a single atom, the vibrational energy relaxation, and the activated barrier crossing dynamics problem are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thermal decomposition of 1,2-dichloroethane (1,2-DCE) has been studied in the temperature range of 10501175 K behind reflected shock waves in a single pulse shock tube. The unimolecular elimination of HCl is found to be the major channel through which 1,2-DCE decomposes under these conditions. The rate constant for the unimolecular elimination of HCl from 1,2-dichloroethane is found to be 10(13.98+/-0.80) exp(-57.8+/-2.0/RT) s(-1), where the activation energy is given in kcal mol(-1) and is very close to that value for CH3CH2Cl (EC). Ab initio (HF and MP2) and DFT calculations have been carried out to find the activation barrier and the structure of the transition state for this reaction channel from both EC and 1,2-DCE. The preexponential factors calculated at various levels of theory (BF/6-311++G**, MP2/6-311++G**, and B3LYP/6-311++G**) are (approximate to10(15) s(-1)) significantly larger than the experimental results. If the torsional mode in the ground state is treated as free internal rotation the preexponential factors reduce significantly, giving excellent agreement with experimental values. The DFT results are in excellent (fortuitous?) agreement with the experimental value for activation energy for 1,2-DCE while the MP2 and HF results seem to overestimate the barrier. However, DFT results for EC is 4.5 kcal mol(-1) less than the previously reported experimental values. At all levels, theory predicts an increase in HCI elimination barrier on beta-Cl substitution on EC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel method of purification for single-walled carbon nanotubes, prepared by an arc-discharge method, is described. The method involves a combination of acid washing followed by high temperature hydrogen treatment to remove the metal nanoparticles and amorphous carbon present in the as-synthesized single-walled carbon nanotubes. The purified single-walled carbon nanotubes have been characterised by low-angle X-ray diffraction, electron microscopy, thermo-gravimetric analysis and Raman spectroscopy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present an extensive study on magnetic and transport properties of La(0.85)Sr(0.15)CoO(3) single crystals grown by a float zone method to address the issue of phase separation versus spin-glass (SG) behavior. The dc magnetization study reveals a kink in field-cooled magnetization, and the peak in the zero-field-cooling curve shifts to lower temperature at modest dc fields, indicating the SG magnetic phase. The ac susceptibility study exhibits a considerable frequency-dependent peak shift (similar to 4 K) and a time-dependent memory effect below the freezing temperature. In addition, the characteristic time scale tau(0) estimated from the frequency-dependent ac susceptibility measurement is found to be similar to 10(-13) s, which matches well with typical values observed in canonical SG systems. The transport relaxation study evidently demonstrates the time-dependent glassy phenomena. In essence, all our experimental results corroborate the existence of SG behavior in La(0.85)Sr(0.15)CoO(3) single crystals.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using in situ x-ray diffraction and Raman scattering techniques, we have investigated the behaviour of single-walled carbon nanotubes bundles under non-hydrostatic pressures. It is seen that the diffraction line corresponding to the two-dimensional triangular lattice in the bundles is not reversible for pressures beyond 5 GPa, in sharp contrast to earlier results under hydrostatic pressure conditions. Most interestingly, radial breathing and tangential Raman modes of the pressure-cycled samples from 21 and 30 GPa match very well with those of the starting sample. Raman and x-ray results put together clearly suggest that the ordering of tubes in the bundles is only marginally regained with a very short coherence length on decompression.