971 resultados para Rotational inertia


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nine H II regions of the LMC were mapped in (CO)-C-13(1-0) and three in (CO)-C-12(1-0) to study the physical properties of the interstellar medium in the Magellanic Clouds. For N113 the molecular core is found to have a peak position which differs from that of the associated H II region by 20 ''. Toward this molecular core the (CO)-C-12 and (CO)-C-13 peak T-MB line temperatures of 7.3 K and 1.2 K are the highest so far found in the Magellanic Clouds. The molecular concentrations associated with N113, N44BC, N159HW, and N214DE in the LMC and LIRS 36 in the SMC were investigated in a variety of molecular species to study the chemical properties of the interstellar medium. I(HCO+)/I(HCN) and I(HCN)/I(HNC) intensity ratios as well as lower limits to the I((CO)-C-13)/I((CO)-O-18) ratio were derived for the rotational 1-0 transitions. Generally, HCO+ is stronger than HCN, and HCN is stronger than HNC. The high relative HCO+ intensities are consistent with a high ionization flux from supernovae remnants and young stars, possibly coupled with a large extent of the HCO+ emission region. The bulk of the HCN arises from relatively compact dense cloud cores. Warm or shocked gas enhances HCN relative to HNC. From chemical model calculations it is predicted that I(HCN)/I(HNC) close to one should be obtained with higher angular resolution (less than or similar to 30 '') toward the cloud cores. Comparing virial masses with those obtained from the integrated CO intensity provides an H-2 mass-to-CO luminosity conversion factor of 1.8 x 10(20) mol cm(-2) (K km s(-1))(-1) for N113 and 2.4 x 10(20) mol cm(-2) (K km s(-1))(-1) for N44BC. This is consistent with values derived for the Galactic disk.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hot molecular cores in star-forming regions are known to have gas-phase chemical compositions determined by the evaporation of material from the icy mantles of interstellar grains, followed by subsequent reactions in the gas phase. Current models suggest that the evaporated material is rich in hydrogenated species, such as water, methane and methanol. In this paper, we report the detection of 14 rotational transitions of ethanol in the submillimetre spectrum of the molecular cloud associated with the ultra-compact H II region G34.3+0.15. We derive a rotation temperature of 125 K and a beam-averaged column density of 2.0x10(15) cm(-2), corresponding to a fractional abundance on the order of 4x10(-9). This large abundance, which is a lower limit due to the likelihood of beam dilution, cannot be made by purely gas-phase processes, and we conclude that the ethanol must be formed efficiently in the grain surface chemistry. Since it has been argued previously that methanol is formed via surface chemistry, it appears that alcohol formation may be a natural by-product of surface reactions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present the results of photometric surveys for stellar rotation in the Hyades and in Praesepe, using data obtained as part of the SuperWASP exoplanetary transit-search programme. We determined accurate rotation periods for more than 120 sources whose cluster membership was confirmed by common proper motion and colour-magnitude fits to the clusters' isochrones. This allowed us to determine the effect of magnetic braking on a wide range of spectral types for expected ages of ˜600 Myr for the Hyades and Praesepe. Both clusters show a tight and nearly linear relation between J-Ks colour and rotation period in the F, G and K spectral range. This confirms that loss of angular momentum was significant enough that stars with strongly different initial rotation rates have converged to the same rotation period for a given mass, by the ages of Hyades and Praesepe. In the case of the Hyades, our colour-period sequence extends well into the M dwarf regime and shows a steep increase in the scatter of the colour-period relation, with identification of numerous rapid rotators from ˜0.5 Msun down to the lowest masses probed by our survey (˜0.25 Msun). This provides crucial constraints on the rotational braking time-scales and further clears the way to use gyrochronology as an accurate age measurement tool for main-sequence stars.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We report the discovery by the WASP transit survey of a giant planet in a close orbit (0.0295 ± 0.0009 AU) around a moderately bright (V = 11.6, K = 10) G9 dwarf (0.89 ± 0.08 Msun, 0.84 ± 0.03 Rsun) in the Southern constellation Eridanus. Thanks to high-precision follow-up photometry and spectroscopy obtained by the telescopes TRAPPIST and Euler, the mass and size of this planet, WASP-50 b, are well constrained to 1.47 ± 0.09 MJup and 1.15 ± 0.05 RJup, respectively. The transit ephemeris is 2 455 558.6120 (±0.0002) + N × 1.955096 (±0.000005) HJDUTC. The size of the planet is consistent with basic models of irradiated giant planets. The chromospheric activity (log R'HK = -4.67) and rotational period (Prot = 16.3 ± 0.5 days) of the host star suggest an age of 0.8 ± 0.4 Gy that is discrepant with a stellar-evolution estimate based on the measured stellar parameters (?* = 1.48 ± 0.10 ?sun, Teff = 5400 ± 100 K, [Fe/H] = -0.12 ± 0.08) which favors an age of 7 ± 3.5 Gy. This discrepancy could be explained by the tidal and magnetic influence of the planet on the star, in good agreement with the observations that stars hosting hot Jupiters tend to show faster rotation and magnetic activity. We measure a stellar inclination of 84-31+6 deg, disfavoring a high stellar obliquity. Thanks to its large irradiation and the relatively small size of its host star, WASP-50 b is a good target for occultation spectrophotometry, making it able to constrain the relationship between hot Jupiters' atmospheric thermal profiles and the chromospheric activity of their host stars. The photometric time-series used in this work are only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/533/A88

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The cure of polydicyclopentadiene conducted by ring-opening metathesis polymerisation in the presence of a Grubbs catalyst was studied using non-invasive Raman spectroscopy. The spectra of the monomer precursor and polymerised product were fully characterised and all stages of polymerisation monitored. Because of the monomer's high reactivity, the cure process is adaptable to reaction injection moulding and reactive rotational moulding. The viscosity of the dicyclopentadiene undergoes a rapid change at the beginning of the polymerisation process and it is critical that the induction time of the viscosity increase is determined and controlled for successful manufacturing. The results from this work show non-invasive Raman spectroscopic monitoring to be an effective method for monitoring the degree of cure, paving the way for possible implementation of the technique as a method of real-time analysis for control and optimisation during reactive processing. Agreement is shown between Raman measurements and ultrasonic time of flight data acquired during the initial induction period of the curing process. (c) 2004 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The capillary micro reactor, with four stable operating flow patterns and a throughput range from grams per hour to kilograms per hour, presents an attractive alternative to chip-based and microstructured reactors for laboratory- and pilot-scale applications. In this article, results for the extraction of 2-butanol from toluene under different flow patterns in a water/toluene flow in long capillary microreactors are presented. The effects of the capillary length (0.4-2.2 m), flow rate (0.1-12 mL/min), and aqueous-to-organic volumetric flow ratio (0.25-9) on the slug, bubbly, parallel, and annular flow hydrodynamics were investigated. Weber-number-dependent flow maps were composed for capillary lengths of 0.4 and 2 m that were used to interpret the flow pattern formation in terms of surface tension and inertia forces. When the capillary length was decreased from 2 to 0.4 m, a transition from annular to parallel flow was observed. The capillary length had little influence on slug and bubbly flows. The flow patterns were evaluated in terms of stability, surface-to-volume ratio, throughput, and extraction efficiency. Slug and bubbly flow operations yielded 100% thermodynamic extraction efficiency, and increasing the aqueous-to-organic volumetric ratio to 9 allowed for 99% 2-butanol extraction. The parallel and annular flow operating windows were limited by the capillary length, thus yielding maximum 2-butanol extractions of 30% and 47% for parallel and annular flows, respectively.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper, the hydrodynamics and the pressure drop of liquid-liquid slug flow in round microcapillaries are presented. Two liquid-liquid flow systems are considered, viz. water-toluene and ethylene glycol/water-toluene. The slug lengths of the alternating continuous and dispersed phases were measured as a function of the slug velocity (0.03-0.5 m/s), the organic-to-aqueous flow ratio (0.1-4.0), and the microcapillary internal diameter (248 and 498 mu m). The pressure drop is modeled as the sum of two contributions: the frictional and the interface pressure drop. Two models are presented, viz, the stagnant film model and the moving film model. Both models account for the presence of a thin liquid film between the dispersed phase slug and the capillary wall. It is found that the film velocity is of negligible influence on the pressure drop. Therefore, the stagnant film model is adequate to accurately predict the liquid-liquid slug flow pressure drop. The influence of inertia and the consequent change of the slug cap curvature are accounted for by modifying Bretherton's curvature parameter in the interface pressure drop equation. The stagnant film model is in good agreement with experimental data with a mean relative error of less than 7%.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Aims. We compare the predictions of evolutionary models for early-type stars with atmospheric parameters, projected rotational velocities and nitrogen abundances estimated for a sample of Be-type stars. Our targets are located in 4 fields centred on the Large Magellanic Cloud cluster: NGC 2004 and the N 11 region as well as the Small Magellanic Cloud clusters: NGC 330 and NGC 346.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present a spectroscopic analysis of an extremely rapidly rotating late O-type star, VFTS102, observed during a spectroscopic survey of 30 Doradus. VFTS102 has a projected rotational velocity larger than 500 km s(-1) and probably as large as 600 km s-1; as such it would appear to be the most rapidly rotating massive star currently identified. Its radial velocity differs by 40 kms(-1) from the mean for 30 Doradus, suggesting that it is a runaway. VFTS102 lies 12 pc from the X-ray pulsar PSR J0537-6910 in the tail of its X-ray diffuse emission. We suggest that these objects originated from a binary system with the rotational and radial velocities of VFTS102 resulting from mass transfer from the progenitor of PSR J0537-691 and the supernova explosion, respectively.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We investigate if the super-saturation phenomenon observed at X-ray wavelengths for the corona exists in the chromosphere for rapidly rotating late-type stars. Moderate resolution optical spectra of fast-rotating EUV- and X-ray-selected late-type stars were obtained. Stars in a Per were observed in the northern hemisphere with the Isaac Newton 2.5 m telescope and Intermediate Dispersion Spectrograph. Selected objects from IC 2391 and IC 2602 were observed in the southern hemisphere with the Blanco 4 m telescope and R-C spectrograph at CTIO. Ca II H and K fluxes were measured for all stars in our sample. We find the saturation level for Ca II K at log (L CaK/L bol) = -4.08. The Ca II K flux does not show a decrease as a function of increased rotational velocity or smaller Rossby number as observed in the X-ray. This lack of "super-saturation" supports the idea of coronal stripping as the cause of saturation and super-saturation in stellar chromospheres and coronae, but the detailed underlying mechanism is still under investigation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The present study proposed the semi-empirical methods for determining the efflux velocity from a ship's propeller. Ryan [1] defined the efflux velocity as the maximum velocity taken from a time-averaged velocity distribution along the initial propeller plane. The Laser Doppler Anemometry (LDA) and Computational Fluid Dynamics (CFD) were used to acquire the efflux velocity from the two propellers with different geometrical characteristics. The LDA and CFD results were compared in order to investigate the equation derived from the axial momentum theory. The study confirmed the validation of the axial momentum theory and its linear relationship between the efflux velocity and the multiplication of the rotational speed, propeller diameter and the square root of thrust coefficient. The linear relationship of these two terms is connected by an efflux coefficient and the value of this efflux coefficient reduced when the blade number increased.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

omega Ori (HD37490, HR1934) is a Be star known to have presented variations. In order to investigate the nature and origin of its short-term and mid-term variability, a study is performed of several spectral lines (Halpha, Hdelta, HeI 4471, 4713, 4921, 5876, 6678, CII 4267, 6578, 6583, Mg II 4481, Si III 4553 and Si II 6347), based on 249 high signal-to-noise high-resolution spectra taken with 8 telescopes over 22 consecutive nights during the MuSiCoS (Multi SIte COntinuous Spectroscopy) campaign in November-December 1998. The stellar parameters are revisited and the projected rotational velocity (v sin i = 179 km s(-1)) is redetermined using several methods. With the MuSiCoS 98 dataset, a time series analysis of line-profile variations (LPVs) is performed using the Restricted Local Cleanest (RLC) algorithm and a least squares method. The behaviour of the velocity of the centroid of the lines, the equivalent widths and the apparent vsini for several lines, as well as Violet and Red components of photospheric lines affected by emission (red He i lines, Si II 6347, CII 6578, 6583) are analyzed. The non-radial pulsation (NRP) model is examined using phase diagrams and the Fourier-Doppler Imaging (FDI) method. The LPVs are consistent with a NRP mode with l = 2 or 3, \m\ = 2 with frequency 1.03 cd(-1). It is shown that an emission line outburst occurred in the middle of the campaign. Two scenarios are proposed to explain the behaviour of a dense cloud, temporarily orbiting around the star with a frequency 0.46 c d(-1), in relation to the outburst.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The maintenance or even replacement of cracked pavements requires considerable financial resources and puts a large burden on the budgets of local councils. In addition to these costs, local councils also face liability claims arising from uneven or cracked pedestrian pavements. These currently cost the Manchester City Council and Preston City Council around £6 million a year each. Design procedures are empirical. A better understanding of the interaction between paving blocks, bedding sand and subbase was necessary in order to determine the mode of failure of pavements under load. Increasing applied stress was found to mobilise ‘‘rotational interlock’’, providing increased pavement stiffness and thus increased load dissipation resulting in lower transmitted stress on the subgrade. The indications from the literature
review were that pavements are designed to fail by excessive deformation and that paving blocks remained uncracked at failure. This was confirmed with experimental data which was obtained from tests on segments of pavements that were laid/constructed in a purpose built test frame in the laboratory.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The authors have recently described a cold-formed steel portal framing system in which simple bolted moment-connections, formed through brackets, were used for the eaves and apex joints. Such connections, however, cannot be considered as rigid because of localised in-plane elongation of the bolt-holes caused by bearing against the bolt-shanks. To therefore predict the initial stiffness of such connections, it is necessary to know the initial bolt-hole elongation stiffness k(b). In this paper, a finite element-solid idealisation of a bolted lap joint in shear will be described that can be used to determine k(b); the results obtained are validated against experimental data. A beam idealisation of a cold-formed steel bolted moment-connection is then described, in which spring elements are used to idealise the rotational flexibility of the bolt-groups resulting from bolt-hole elongation: Using the value of k(b) in the beam idealisation, the deflections predicted are shown to be similar to those measured experimentally in laboratory tests conducted on the apex joint of a cold-formed steel portal frame. (C) 2003 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A simple linear beam idealization of a cold-formed steel portal frame is presented in which beam elements are used to idealize the column and rafter members, and rotational spring elements are used to represent the rotational flexibility of the joints. In addition, the beam idealization takes into account the finite connection length of the joints. Deflections predicted using the beam idealization are shown to be comparable to deflections obtained from both a linear finite element shell idealization and full-scale laboratory tests. Using the beam idealization, deflections under rafter load are divided into three components: Deflection due to flexure of the column and rafter members, deflection due to bolt-hole elongation, and deflection due to in-plane bracket deformation. Of these deflection components, the deflection due to bolt-hole elongation is the most significant and cannot, therefore, be ignored. Using the beam idealization, engineers can analyze and design cold-formed steel portal frames, including making appropriate allowances for connection effects, without the need to resort to expensive finite element shell analysis.