990 resultados para Root canal fillings materials
Resumo:
INTRODUÇÃO: Hidrelétricas alteram o fluxo das águas e provocam impactos sobre a composição de mosquitos, justificando-se essa pesquisa. O objetivo da pesquisa foi estudar anofelinos de área sob a influência de um novo lago e avaliar a vulnerabilidade relativa à malária. MÉTODOS: Foram feitas coletas de Anopheles nas margens da Represa Porto Primavera, durante as fases do alagamento até sua cota máxima. Utilizaram-se as técnicas: atrativa humana, de armadilha de Shannon e concha entomológica. Os indicadores Riqueza e Diversidade foram utilizados para medir o impacto. A análise das distribuições temporais foi realizada pelo teste Mann-Whitney, considerando localidade, cota e método de captura como variáveis independentes (α=0,05). RESULTADOS: A densidade de Anopheles darlingi oscilou entre as localidades A, B e C, sendo que os maiores picos foram para B e C. Com a estabilidade do lago, no último nível, evidenciou-se a tendência de redução da densidade de Anopheles darlingi. CONCLUSÕES: Sugere-se que o risco de autoctonia de malária nas proximidades do lago permanece inalterado, ficando o alerta para esporádicas infecções humanas.
Resumo:
Nickel-based super alloys are used in a variety of applications in which high-temperature strength and resistance to creep, corrosion, and oxidation are required, such as in aircraft gas turbines, combustion chambers, and automotive engine valves. The properties that make these materials suitable for these applications also make them difficult to grind. Grinding systems for such materials are often built around vitrified cBN (cubic boron nitride) wheels to realize maximum productivity and minimum cost per part. Conditions that yield the most economical combination of stock removal rate and wheel wear are key to the successful implementation of the grinding system. Identifying the transition point for excessive wheel wear is important. The aim of this study is to compare the performance of different cBN wheels when grinding difficult-to-grind (DTG) materials by determining the 'wheel wear characteristic curve', which correlates the G-ratio to the calculated tangential force per abrasive grain. With the proposed methodology, a threshold force per grit above which the wheel wear rate increases rapidly can be quickly identified. A comparison of performance for two abrasive product formulations in the grinding of three materials is presented. The obtained results can be applied for the development of grinding applications for DTG materials.
Resumo:
In this work, the effects of indenter tip roundness oil the load-depth indentation curves were analyzed using finite element modeling. The tip roundness level was Studied based on the ratio between tip radius and maximum penetration depth (R/h(max)), which varied from 0.02 to 1. The proportional Curvature constant (C), the exponent of depth during loading (alpha), the initial unloading slope (S), the correction factor (beta), the level of piling-up or sinking-in (h(c)/h(max)), and the ratio h(max)/h(f) are shown to be strongly influenced by the ratio R/h(max). The hardness (H) was found to be independent of R/h(max) in the range studied. The Oliver and Pharr method was successful in following the variation of h(c)/h(max) with the ratio R/h(max) through the variation of S with the ratio R/h(max). However, this work confirmed the differences between the hardness values calculated using the Oliver-Pharr method and those obtained directly from finite element calculations; differences which derive from the error in area calculation that Occurs when given combinations of indented material properties are present. The ratio of plastic work to total work (W(p)/W(t)) was found to be independent of the ratio R/h(max), which demonstrates that the methods for the Calculation of mechanical properties based on the *indentation energy are potentially not Susceptible to errors caused by tip roundness.
Resumo:
In this work, the effects of conical indentation variables on the load-depth indentation curves were analyzed using finite element modeling and dimensional analysis. A factorial design 2(6) was used with the aim of quantifying the effects of the mechanical properties of the indented material and of the indenter geometry. Analysis was based on the input variables Y/E, R/h(max), n, theta, E, and h(max). The dimensional variables E and h(max) were used such that each value of dimensionless Y/E was obtained with two different values of E and each value of dimensionless R/h(max) was obtained with two different h(max) values. A set of dimensionless functions was defined to analyze the effect of the input variables: Pi(1) = P(1)/Eh(2), Pi(2) = h(c)/h, Pi(3) = H/Y, Pi(4) = S/Eh(max), Pi(6) = h(max)/h(f) and Pi(7) = W(P)/W(T). These six functions were found to depend only on the dimensionless variables studied (Y/E, R/h(max), n, theta). Another dimension less function, Pi(5) = beta, was not well defined for most of the dimensionless variables and the only variable that provided a significant effect on beta was theta. However, beta showed a strong dependence on the fraction of the data selected to fit the unloading curve, which means that beta is especially Susceptible to the error in the Calculation of the initial unloading slope.
Resumo:
Currently, the acoustic and nanoindentation techniques are two of the most used techniques for material elastic modulus measurement. In this article fundamental principles and limitations of both techniques are shown and discussed. Last advances in nanoindentation technique are also reviewed. An experimental study in ceramic, metallic, composite and single crystals was also done. Results shown that ultrasonic technique is capable to provide results in agreement with those reported in literature. However, ultrasonic technique does not allow measuring the elastic modulus of some small samples and single crystals. On the other hand, the nanoindentation technique estimates the elastic modulus values in reasonable agreement with those measured by acoustic methods, particularly in amorphous materials, while in some policristaline materials some deviation from expected values was obtained.
Resumo:
Objective: To evaluate the effects of local administration of epidermal growth factor (EGF) located within liposomes on recruitment of osteoclasts during mechanical force in rats. Materials and Methods: An orthodontic elastic band was inserted between the left upper first and second molars, to move mesially the first molar. Rats were randomly divided into 4 groups (n = 8): EGF (2 ng/mu L) located within liposomes (group 1), liposomes only (group 2), soluble EGF (2 ng/mu L; group 3), or vehicle alone (group 4). The solutions were injected into the region of the root furcation of the left first molar after elastic band insertion. Tooth movement was measured using a plaster model of the maxilla, and the number of osteoclasts recruited at the pressure side of the first molar was histologically evaluated. Results: Intergroup analysis showed that there was no significant difference between group 2 and group 4 (P >.05) and between group 1 and group 3 (P >.05). However, group 1 and group 3 exhibited greater differences in tooth movement than group 2 and group 4 (P <.05). On the other hand, group 1 showed greater tooth movement than groups 2 and 4 with statistical significance (P <.01). The increase in the number of osteoclasts in group 1 was significantly higher than in the other groups (P <.05). Conclusion: Exogenous EGF-liposome administration has an additive effect when compared with soluble EGF on the rate of osteoclast recruitment, producing faster bone resorption and tooth movement.
Resumo:
The aim of the present work is the presentation of a quantification methodology for the control of the amount of superparamagnetic iron oxide nanoparticles (SPIONs) administered in biological materials by means of the ferromagnetic resonance technique (FMR) applied to studies both in vivo and in vitro. The in vivo study consisted in the analysis of the elimination and biodistribution kinetics of SPIONs after intravenous administration in Wistar rats. The results were corroborated by X-ray fluorescence. For the in vitro study, a quantitative analysis of the concentration of SPIONs bound to the specific AC133 monoclonal antibodies was carried out in order to detect the expression of the antigenic epitopes (CD133) in stem cells from human umbilical cord blood. In both studies FMR has proven to be an efficient technique for the SPIONs quantification per volume unit (in vivo) or per labeled cell (in vitro).
Resumo:
We report a new STAR measurement of the longitudinal double-spin asymmetry A(LL) for inclusive jet production at midrapidity in polarized p+p collisions at a center-of-mass energy of root s = 200 GeV. The data, which cover jet transverse momenta 5 < p(T) < 30 GeV/c, are substantially more precise than previous measurements. They provide significant new constraints on the gluon spin contribution to the nucleon spin through the comparison to predictions derived from one global fit to polarized deep-inelastic scattering measurements. They provide significant new constraints on the gluon spin contribution to the nucleon spin through the comparison to predictions derived from one global fit to polarized deep-inelastic scattering measurements.
Resumo:
We present the first spin alignment measurements for the K*(0)(892) and phi(1020) vector mesons produced at midrapidity with transverse momenta up to 5 GeV/c at root s(NN) = 200 GeV at RHIC. The diagonal spin-density matrix elements with respect to the reaction plane in Au+Au collisions are rho(00) = 0.32 +/- 0.04 (stat) +/- 0.09 (syst) for the K*(0) (0.8 < p(T) < 5.0 GeV/c) and rho(00) = 0.34 +/- 0.02 (stat) +/- 0.03 (syst) for the phi (0.4 < p(T) < 5.0 GeV/c) and are constant with transverse momentum and collision centrality. The data are consistent with the unpolarized expectation of 1/3 and thus no evidence is found for the transfer of the orbital angular momentum of the colliding system to the vector-meson spins. Spin alignments for K(*0) and phi in Au+Au collisions were also measured with respect to the particle's production plane. The phi result, rho(00) = 0.41 +/- 0.02 (stat) +/- 0.04 (syst), is consistent with that in p+p collisions, rho(00) = 0.39 +/- 0.03 (stat) +/- 0.06 (syst), also measured in this work. The measurements thus constrain the possible size of polarization phenomena in the production dynamics of vector mesons.
Resumo:
We present STAR results on the elliptic flow upsilon(2) Of charged hadrons, strange and multistrange particles from,root s(NN) = 200 GeV Au+Au collisions at the BNL Relativistic Heavy Ion Collider (RHIC). The detailed study of the centrality dependence of upsilon(2) over a broad transverse momentum range is presented. Comparisons of different analysis methods are made in order to estimate systematic uncertainties. To discuss the nonflow effect, we have performed the first analysis Of upsilon(2) with the Lee-Yang zero method for K(S)(0) and A. In the relatively low PT region, P(T) <= 2 GeV/c, a scaling with m(T) - m is observed for identified hadrons in each centrality bin studied. However, we do not observe nu 2(p(T))) scaled by the participant eccentricity to be independent of centrality. At higher PT, 2 1 <= PT <= 6 GeV/c, V2 scales with quark number for all hadrons studied. For the multistrange hadron Omega, which does not suffer appreciable hadronic interactions, the values of upsilon(2) are consistent with both m(T) - m scaling at low p(T) and number-of-quark scaling at intermediate p(T). As a function ofcollision centrality, an increase of p(T)-integrated upsilon(2) scaled by the participant eccentricity has been observed, indicating a stronger collective flow in more central Au+Au collisions.
Resumo:
We report on the observed differences in production rates of strange and multistrange baryons in Au+Au collisions at s(NN)=200 GeV compared to p+p interactions at the same energy. The strange baryon yields in Au+Au collisions, when scaled down by the number of participating nucleons, are enhanced relative to those measured in p+p reactions. The enhancement observed increases with the strangeness content of the baryon, and it increases for all strange baryons with collision centrality. The enhancement is qualitatively similar to that observed at the lower collision energy s(NN)=17.3 GeV. The previous observations are for the bulk production, while at intermediate p(T),1 < p(T)< 4 GeV/c, the strange baryons even exceed binary scaling from p+p yields.
Resumo:
Photoproduction reactions occur when the electromagnetic field of a relativistic heavy ion interacts with another heavy ion. The STAR Collaboration presents a measurement of rho(0) and direct pi(+)pi(-) photoproduction in ultraperipheral relativistic heavy ion collisions at root s(NN) = 200 GeV. We observe both exclusive photoproduction and photoproduction accompanied by mutual Coulomb excitation. We find a coherent cross section of sigma(AuAu -> Au*Au*rho(0)) = 530 +/- 19(stat.) +/- 57(syst.) mb, in accord with theoretical calculations based on a Glauber approach, but considerably below the predictions of a color dipole model. The rho 0 transverse momentum spectrum (p(T)(2)) is fit by a double exponential curve including both coherent and incoherent coupling to the target nucleus; we find sigma(inc)/sigma(coh) = 0.29 +/- 0.03 (stat.) +/- 0.08 (syst.). The ratio of direct pi(+)pi(-) to rho(0) production is comparable to that observed in gamma(p) collisions at HERA and appears to be independent of photon energy. Finally, the measured rho(0) spin helicity matrix elements agree within errors with the expected s-channel helicity conservation.
Resumo:
Objective: Our goal was to compare the in vivo biocompatibility of dental root surfaces submitted to four different treatments after tooth avulsion followed by implantation into rat subcutaneous tissue. Background Data: Dental root surface preparation prior to replanting teeth remains a challenge for endodontists. Root surface changes made by Nd:YAG irradiation could be an alternative preparation. Methods: Forty-eight freshly extracted human dental roots were randomly divided into four treatment groups prior to implantation into rat subcutaneous tissue: G1, dry root, left in the environment up to 3 h; G2, the same treatment as G1, followed by a soaking treatment in a 2.4% sodium fluoride solution (pH 5.5); G3, root soaked in physiologic saline after avulsion for 72 h; G4, the same treatment as G1, followed by Nd:YAG laser irradiation (2.0 W, 20 Hz, 100 mJ, and 124.34 J/cm(2)). The animals were sacrificed 1, 7, and 45 d later. Histological and scanning electron microscopy analyses were done. Results: All dental roots were involved and in intimate contact with connective tissue capsules of variable thicknesses. Differences were observed in the degree of inflammation and in connective tissue maturation. In G3 the inflammatory infiltrate was maintained for 45 d, whereas the Nd:YAG laser irradiation (G4) led to milder responses. The overall aspects of the root surfaces were similar, except by the irradiated roots, where fusion and resolidification of the root surface covering the dentinal tubules were observed. Conclusion: Nd:YAG laser irradiation improves the biocompatibility of dental root and thus could be an alternative treatment of dental root prior to replantation.
Resumo:
Objective: This in vitro study evaluated the influence of cavity preparation using the Er:YAG laser and restorative materials containing fluoride on preventing caries lesions. Background: It has been suggested that cavity preparation using the Er:YAG laser has a potential for improving resistance to secondary caries on enamel. Methods: Forty unerupted human third molars teeth were sectioned into 72 blocks of dental enamel and distributed into two groups to prepare cavities measuring (1.6 mm diameter) with diamond burs (DB) or Er:YAG laser (LA; 6 Hz, 300 mJ, 47 J/cm(2)). After that, each group was divided into three subgroups and restored with a glass-ionomer cement (GI), a resin-modified glass-ionomer (RM), or a composite resin (CR). Blocks were thermal cycled and submitted to a pH challenge to develop artificial caries-like lesions. Lesions were evaluated by Knoop microhardness test. An average of four indentations was used. Statistical analyses were performed by ANOVA followed by Tukey's test. Results: The results (in Knoop hardness number) for DB cavity preparation were GI, 235.5 (+/- 75.5); RM, 137.1 (+/- 64.1); and CR, 39.3 (+/- 26.5). For LA cavity preparation, the results were GI, 410.0 (+/- 129.7); RM, 310.3 (+/- 119.5); and CR, 96.4 (+/- 57.4). Conclusions: There was less development of caries lesion around LA-prepared cavities than around the DB-prepared cavities; however, no synergistic cariostatic effect was observed between the Er:YAG laser and glass ionomer cement.
Resumo:
Objective: To verify the effects of laser energy on intracanal dentin surfaces, by analyzing the morphologic changes and removal of debris in the apical third of 30 extracted human teeth, prepared and irradiated with the Nd:YAG laser and diode laser. Background Data: Lasers have been widely used in endodontics. The morphologic changes in dentin walls caused by Nd: YAG and diode laser irradiation could improve apical seals and cleanliness. Materials and Methods: The protocol used for Nd: YAG laser irradiation was 1.5 W, 100 mJ, and 15 Hz, in pulsed mode, and for diode laser was 2.5 W in continuous mode. Each specimen was irradiated four times at a speed of 2 mm/sec with a 20-sec interval between applications. Five calibrated examiners scored the morphologic changes and debris removal on a 4-point scale. Results: In analyzing the scores, there were no statistically significant differences between the two types of laser for either parameter, according to Kruskal-Wallis testing at p = 0.05. The SEM images showed fusion and resolidification of the dentin surface, with partial removal of debris on the specimens irradiated with the Nd: YAG laser and the diode laser, compared with controls. Conclusion: Both lasers promote morphologic changes and debris removal. These alterations of the dentin surface appeared to be more evident in the Nd: YAG laser group, but the diode laser group showed more uniform changes.