984 resultados para Rock-Soil Block
Resumo:
The minimum distance of linear block codes is one of the important parameter that indicates the error performance of the code. When the code rate is less than 1/2, efficient algorithms are available for finding minimum distance using the concept of information sets. When the code rate is greater than 1/2, only one information set is available and efficiency suffers. In this paper, we investigate and propose a novel algorithm to find the minimum distance of linear block codes with the code rate greater than 1/2. We propose to reverse the roles of information set and parity set to get virtually another information set to improve the efficiency. This method is 67.7 times faster than the minimum distance algorithm implemented in MAGMA Computational Algebra System for a (80, 45) linear block code.
Resumo:
We propose F-norm of the cross-correlation part of the array covariance matrix as a measure of correlation between the impinging signals and study the performance of different decorrelation methods in the broadband case using this measure. We first show that dimensionality of the composite signal subspace, defined as the number of significant eigenvectors of the source sample covariance matrix, collapses in the presence of multipath and the spatial smoothing recovers this dimensionality. Using an upper bound on the proposed measure, we then study the decorrelation of the broadband signals with spatial smoothing and the effect of spacing and directions of the sources on the rate of decorrelation with progressive smoothing. Next, we introduce a weighted smoothing method based on Toeplitz-block-Toeplitz (TBT) structuring of the data covariance matrix which decorrelates the signals much faster than the spatial smoothing. Computer simulations are included to demonstrate the performance of the two methods.
Resumo:
An interaction analysis of an axially loaded single pile and pile group with and without a pile cap in a layered soil medium has been investigated using the two-dimensional photoelastic method. A study of the pile or pile group behaviour has been made, varying the pile cap thickness as well as the embedded length of the pile in the hard stratum. The shear stress distribution along the pile-soil interface, non-dimensionalized settlement values of the single pile and the interaction factor for the pile group have been presented. Wherever possible, the results of the present analysis have been compared with available numerical solutions.
Resumo:
This study describes two machine learning techniques applied to predict liquefaction susceptibility of soil based on the standard penetration test (SPT) data from the 1999 Chi-Chi, Taiwan earthquake. The first machine learning technique which uses Artificial Neural Network (ANN) based on multi-layer perceptions (MLP) that are trained with Levenberg-Marquardt backpropagation algorithm. The second machine learning technique uses the Support Vector machine (SVM) that is firmly based on the theory of statistical learning theory, uses classification technique. ANN and SVM have been developed to predict liquefaction susceptibility using corrected SPT (N-1)(60)] and cyclic stress ratio (CSR). Further, an attempt has been made to simplify the models, requiring only the two parameters (N-1)(60) and peck ground acceleration (a(max)/g)], for the prediction of liquefaction susceptibility. The developed ANN and SVM models have also been applied to different case histories available globally. The paper also highlights the capability of the SVM over the ANN models.
Resumo:
The planar rocking of a prismatic rectangular rigid block about either of its corners is considered. The problem of homoclinic intersections of the stable and unstable manifolds of the perturbed separatrix is addressed to and the corresponding Melnikov functions are derived. Inclusion of the vertical forcing in the Hamiltonian permits the construction of a three-dimensional separatrix. The corresponding modified Melnikov function of Wiggins for homoclinic intersections is derived. Further, the 1-period symmetric orbits are predicted analytically using the method of averaging and compared with the simulation results. The stability boundary for such orbits is also established.
Resumo:
This article describes the first comprehensive study on the use of a vinyl polyperoxide, namely poly(styrene peroxide) (PSP), an equimolar alternating copolymer of oxygen and styrene, as a photoinitiator for free radical polymerization of vinyl monomers like styrene. The molecular weight, yield, structure and thermal stability of polystyrene (PS) thus obtained are compared with PS made using a simple peroxide like di-t-butyl peroxide. Interestingly, the PS prepared using PSP contained PSP segments attached to its backbone preferably at the chain ends. This PSP-PS-PSP was further used as a thermal macroinitiator for the preparation of another block copolymer PS-b-PMMA by reacting PSP-PS-PSP with methyl methacrylate (MMA). The mechanism of block copolymerization has been discussed. (C) 1996 John Wiley & Sons, Inc.
Resumo:
As a seepage barrier slurry trench material should have a relatively low coefficient of permeability, in the range of 10(-7) cm/s, and at the same time should be compatible with surrounding material with regard to compressibility. Although bentonite-sand/soil mixes are used widely, there is no specific engineering approach to proportion these mixes that satisfies the above practical requirements. In this paper, a generalized approach is presented for predicting the permeability and compressibility characteristics of mixes with minimum input parameters. This approach will be helpful in proportioning mixes and predicting corresponding changes in engineering behavior. It is possible to proportion a mix to arrive at the required compressibility without affecting the permeability. This is explained using an illustrative example.
Resumo:
Multisensor recordings are becoming commonplace. When studying functional connectivity between different brain areas using such recordings, one defines regions of interest, and each region of interest is often characterized by a set (block) of time series. Presently, for two such regions, the interdependence is typically computed by estimating the ordinary coherence for each pair of individual time series and then summing or averaging the results over all such pairs of channels (one from block 1 and other from block 2). The aim of this paper is to generalize the concept of coherence so that it can be computed for two blocks of non-overlapping time series. This quantity, called block coherence, is first shown mathematically to have properties similar to that of ordinary coherence, and then applied to analyze local field potential recordings from a monkey performing a visuomotor task. It is found that an increase in block coherence between the channels from V4 region and the channels from prefrontal region in beta band leads to a decrease in response time.
Resumo:
This paper critically appraises the limitations of the liquid-limit water content of clayey soils determined conventionally either by percussion cup or by the cone penetration method. It is shown that the conventional liquid limit and plastic limit are arbitrary, strength-based water contents and that they cannot represent the plasticity limits, and that the state of the soil-water system at the conventional liquid limit does not correspond to a stress-free reference state. The present investigation identifies three characteristic limiting water contents for a soil-water system which have well-defined, unique mechanisms controlling them, namely the free swell limit, settling limit and shrinkage limit. Simple procedures for the determination of the free swell limit and settling limit of natural soils are presented. The settling limit is shown to be the 'real liquid limit' of any clayey soil. With a number of experimental illustrations, it is clearly shown that the settling limit represents the maximum water-holding capacity of clayey soils and that it corresponds to the stress-free reference state.
Resumo:
The soil moisture characteristic (SMC) forms an important input to mathematical models of water and solute transport in the unsaturated-soil zone. Owing to their simplicity and ease of use, texture-based regression models are commonly used to estimate the SMC from basic soil properties. In this study, the performances of six such regression models were evaluated on three soils. Moisture characteristics generated by the regression models were statistically compared with the characteristics developed independently from laboratory and in-situ retention data of the soil profiles. Results of the statistical performance evaluation, while providing useful information on the errors involved in estimating the SMC, also highlighted the importance of the nature of the data set underlying the regression models. Among the models evaluated, the one possessing an underlying data set of in-situ measurements was found to be the best estimator of the in-situ SMC for all the soils. Considerable errors arose when a textural model based on laboratory data was used to estimate the field retention characteristics of unsaturated soils.
Resumo:
Geophysical methods are becoming more popular nowadays in the field of hydrology due to their time and space efficiency. So an attempt has been made here to relate electrical resistivity with soil moisture content in the field. The experiments were carried out in an experimental watershed `Mulehole' in southern India, which is a forested watershed with approximately 80% red soil. Five auger holes were drilled to perform the soil moisture and electrical resistivity measurements in a toposequence having red and black soils, with sandy weathered soil at the bottom. Soil moisture was measured using neutron probe and electrical resistivity was measured using electrical logging tool. The results indicate that electrical resistivity measurements can be used to measure soil moisture content for red soils only.
Resumo:
A discussion of a technical note with the aforementioned title by Day and Marsh, published in this journal (Volume 121, Number 7, July 1995), is presented. Discussers Robinson and Allam assert that the authors' application of the pore-pressure parameter A to predict and quantify swell or collapse of compacted soils is hard to use because the authors visualize the collapse-swell phenomenon to occur in compacted soils broadly classified as sands and clays. The literature demonstrates that mineralogy has an important role in the volume change behavior of fine-grained soils. Robinson and Allam state that the A-value measurements may not completely predict the type of volume change anticipated in compacted soils on soaking without soil clay mineralogy details. Discussion is followed by closure from the authors.
Resumo:
Mesoporous MnO2 is prepared from KMnO4 by using a tri-block copolymer, namely, poly(ethylene glycol)-block-poly(propylene glycol)-block-poly(ethylene glycol) (PEG-PPG-PEG) as a reducing as well as a structure-directing agent. The as synthesized MnO2 samples are poorly crystalline with mesoporosity having pore diameter between 8 and 40 nm. BET surface area as high as 273 m(2) g(-1) is obtained. By heating, the poorly crystalline MnO2 turns into a well crystalline form at 400 degrees C with nanorod morphology. However, the surface area decreases for the heated samples. Samples of MnO2 prepared by varying the ratio of KMnO4 and the copolymer, and also the heated samples are subjected to electrochemical characterization for supercapacitor studies. High specific capacitance values on mass basis are obtained for the as prepared mesoporous MnO2 samples. (C) 2011 Elsevier Inc. All rights reserved.