982 resultados para Robots.


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sociable robots are embodied agents that are part of a heterogeneous society of robots and humans. They Should be able to recognize human beings and each other, and to engage in social, interactions. The use of a robotic architecture may strongly reduce the time and effort required to construct a sociable robot. Such architecture must have structures and mechanisms to allow social interaction. behavior control and learning from environment. Learning processes described oil Science of Behavior Analysis may lead to the development of promising methods and Structures for constructing robots able to behave socially and learn through interactions from the environment by a process of contingency learning. In this paper, we present a robotic architecture inspired from Behavior Analysis. Methods and structures of the proposed architecture, including a hybrid knowledge representation. are presented and discussed. The architecture has been evaluated in the context of a nontrivial real problem: the learning of the shared attention, employing an interactive robotic head. The learning capabilities of this architecture have been analyzed by observing the robot interacting with the human and the environment. The obtained results show that the robotic architecture is able to produce appropriate behavior and to learn from social interaction. (C) 2009 Elsevier Inc. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The issue of how children learn the meaning of words is fundamental to developmental psychology. The recent attempts to develop or evolve efficient communication protocols among interacting robots or Virtual agents have brought that issue to a central place in more applied research fields, such as computational linguistics and neural networks, as well. An attractive approach to learning an object-word mapping is the so-called cross-situational learning. This learning scenario is based on the intuitive notion that a learner can determine the meaning of a word by finding something in common across all observed uses of that word. Here we show how the deterministic Neural Modeling Fields (NMF) categorization mechanism can be used by the learner as an efficient algorithm to infer the correct object-word mapping. To achieve that we first reduce the original on-line learning problem to a batch learning problem where the inputs to the NMF mechanism are all possible object-word associations that Could be inferred from the cross-situational learning scenario. Since many of those associations are incorrect, they are considered as clutter or noise and discarded automatically by a clutter detector model included in our NMF implementation. With these two key ingredients - batch learning and clutter detection - the NMF mechanism was capable to infer perfectly the correct object-word mapping. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The main objective for this degree project is to implement an Application Availability Monitoring (AAM) system named Softek EnView for Fujitsu Services. The aim of implementing the AAM system is to proactively identify end user performance problems, such as application and site performance, before the actual end users experience them. No matter how well applications and sites are designed and nomatter how well they meet business requirements, they are useless to the end users if the performance is slow and/or unreliable. It is important for the customers to find out whether the end user problems are caused by the network or application malfunction. The Softek EnView was comprised of the following EnView components: Robot, Monitor, Reporter, Collector and Repository. The implemented system, however, is designed to use only some of these EnView elements: Robot, Reporter and depository. Robots can be placed at any key user location and are dedicated to customers, which means that when the number of customers increases, at the sametime the amount of Robots will increase. To make the AAM system ideal for the company to use, it was integrated with Fujitsu Services’ centralised monitoring system, BMC PATROL Enterprise Manager (PEM). That was actually the reason for deciding to drop the EnView Monitor element. After the system was fully implemented, the AAM system was ready for production. Transactions were (and are) written and deployed on Robots to simulate typical end user actions. These transactions are configured to run with certain intervals, which are defined collectively with customers. While they are driven against customers’ applicationsautomatically, transactions collect availability data and response time data all the time. In case of a failure in transactions, the robot immediately quits the transactionand writes detailed information to a log file about what went wrong and which element failed while going through an application. Then an alert is generated by a BMC PATROL Agent based on this data and is sent to the BMC PEM. Fujitsu Services’ monitoring room receives the alert, reacts to it according to the incident management process in ITIL and by alerting system specialists on critical incidents to resolve problems. As a result of the data gathered by the Robots, weekly reports, which contain detailed statistics and trend analyses of ongoing quality of IT services, is provided for the Customers.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cooperative control of multiple mobile robots is an attractive and challenging problem which has drawn considerable attention in the recent past. This paper introduces a scalable decentralized control algorithm to navigate a group of mobile robots (swarm) into a predefined shape in 2D space. The proposed architecture uses artificial forces to control mobile agents into the shape and spread them inside the shape while avoiding inter-member collisions. The theoretical analysis of the swarm behavior describes the motion of the complete swarm and individual members in relevant situations. We use computer simulated case studies to verify the theoretical assertions and to demonstrate the robustness of the swarm under external disturbances such as death of agents, change of shape etc.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents a system of systems approach to threat detection through integration of heterogeneous independently operable systems. The approach is presented on a realistic situation where a human-controlled base robot, swarm robot(s), and sensors work together to obtain a decision about a possible threat in the environment. The base robot is remotely operated by a human using a haptic control system. The swarm robot(s) are autonomous and can accept directives from the base robot. Finally, sensors directly communicate with (report to) the base robot. In this scenario, heterogeneous systems and human interact in a system of systems architecture. With the inclusion of human expert and sensor verification of swarm robots, the system can successfully perform the threat detection and reduce the false alarms. Finally, a system of systems simulation framework including a base robot, a swarm robot, and two sensors is presented in addition to an experimental evaluation of the proposed SoS architecture

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A continued increase in computing power, sensor capability, software functionality, immersive interfaces and hardware modularity has given robot designers seemingly endless potential in the area of mobile robotics.  While some mobile robotic system designers are focusing on expensive, full-featured platforms, developers are realising the advantages of emerging technology in providing small, low-cost mobile reconnaissance vehicles as expendable teleoperated robotic systems.  The OzBotTM mobile reconnaissance platform presents one such system.  The design objectives of the OzBotTM platform focus on the development of inexpensive, lightweight carry-case sized robots for search and rescue operations, law enforcement scenarios and hazardous environment inspection.  The incorporation of Haptic augmentation provides the teleoperator with improved task immersion for an outdoor search and rescue scenario.  Achieved in cooperation with law enforcement agencies within Australia, this paper discusses the performance of the first four revisions of the OzBotTM platform.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Developing successful navigation and mapping strategies is an essential part of autonomous robot research. However, hardware limitations often make for inaccurate systems. This project serves to investigate efficient alternatives to mapping an environment, by first creating a mobile robot, and then applying machine learning to the robot and controlling systems to increase the robustness of the robot system. My mapping system consists of a semi-autonomous robot drone in communication with a stationary Linux computer system. There are learning systems running on both the robot and the more powerful Linux system. The first stage of this project was devoted to designing and building an inexpensive robot. Utilizing my prior experience from independent studies in robotics, I designed a small mobile robot that was well suited for simple navigation and mapping research. When the major components of the robot base were designed, I began to implement my design. This involved physically constructing the base of the robot, as well as researching and acquiring components such as sensors. Implementing the more complex sensors became a time-consuming task, involving much research and assistance from a variety of sources. A concurrent stage of the project involved researching and experimenting with different types of machine learning systems. I finally settled on using neural networks as the machine learning system to incorporate into my project. Neural nets can be thought of as a structure of interconnected nodes, through which information filters. The type of neural net that I chose to use is a type that requires a known set of data that serves to train the net to produce the desired output. Neural nets are particularly well suited for use with robotic systems as they can handle cases that lie at the extreme edges of the training set, such as may be produced by "noisy" sensor data. Through experimenting with available neural net code, I became familiar with the code and its function, and modified it to be more generic and reusable for multiple applications of neural nets.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Control of a group of mobile robots in a formation requires not only environmental sensing but also communication among vehicles. Enlarging the size of the platoon of vehicles causes difficulties due to communications bandwidth limitations. Decentralized control may be an appropriate approach in those cases when the states of all vehicles cannot be obtained in a centralized manner. This paper presents a solution to the problem of decentralized implementation of a global state-feedback controller for N mobile robots in a formation. The proposed solution is based on the design of functional observers to estimate asymptotically the global state-feedback control signals by using the corresponding local output information and some exogenous global functions. The proposed technique is tested through simulation and experiments for the control of groups of Pinoneer-based non-holonomic mobile robots.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The problem of threat detection in an unstructured environment is considered. Three systems, comprising of robots and sensors, are proposed to form a system of systems (SoS) to find a solution to the problem. System interactions are defined to provide a framework for formulation as an SoS optimization problem. Different cost and objective functions are introduced for optimization of local criteria. Using different weights, a linear combination of the local cost and objective functions is obtained to propose a global objective function. An algorithm is suggested to find an optimum value for the global objective function leading towards optimization of the SoS.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The human hand provides proof that the anthropomorphic configuration, properly controlled, is successful and gives a target to aim at for artificial hand/robot hand researchers. In this paper we discuss the human hand physiology and grasp capabilities. We then provide design on a double thumb, two finger robotic hand. Architecture of the hand, fingers and their dynamic modelling is discussed. Finally, results are reported on the performance of a finger in the hand.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents an application of Microsoft Robotics Studio (MSRS) in which a team of six four wheel drive, ground based robots explore and map simulated terrain. The user has the ability to modify the terrain and assign destination objectives to the team while the simulation is running. The terrain is initially generated using a gray scale image, in which the intensity of each pixel in the image gives an altitude datum. The robots start with no knowledge of their surroundings, and map the terrain as they attempt to reach user-defined target objectives. The mapping process simulates the use of common sensory hardware to determine datum points, including provision for field of view, detection range, and measurement accuracy. If traversal of a mapped area is indicated by the users’ targeting commands, path planning heuristics developed for MSRS by the author in earlier work are used to determine an efficient series of waypoints to reach the objective. Mutability of terrain is also explored- the user is able to modify the terrain without stopping the simulation. This forces the robots to adapt to changing environmental conditions, and permits analysis of the robustness of mapping algorithms used when faced with a changing world.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Teleoperated mobile robots provide the ability for a human operator to safely explore and evaluate hazardous environments. This ability represents an important progression towards the preservation of human safety in the inevitable response to situations such as terrorist activities and urban search and rescue. The benefits of removing physical human presence from such environments are obvious, however challenges inhibiting task performance when remotely operating a mobile robotic system need to be addressed. The removal of physical human presence from the target environment introduces telepresence as a vital consideration in achieving the desired objective. Introducing haptic human-robotic interaction represents one approach towards improving operator performance in such a scenario. Teleoperative stair traversal proves to be a challenging task when undertaking threat response in an urban environment. This article investigates the teleoperation of an articulated track mobile robot designed for traversing stairs in a threat response scenario. Utilising a haptic medium for bilateral human-robotic interaction, the haptic cone methodology is introduced with the aim of providing the operator with a vision-independent, intuitive indication of the current commanded robot velocity. The haptic cone methodology operates synergistically with the introduced fuzzy-haptic augmentation for improving teleoperator performance in the stair traversal scenario.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents a simple and available system for manipulation of heavy tools by low powered manipulator for industrial applications. In the heavy manufacturing industries, sometimes, heavy tools are employed for different types of work. But the application of robots with heavy tools is not possible due to the limited torque limits of actuators. Suspended tool systems (STS) have been proposed to manipulate heavy tools by low powered robot-arm for this purpose. A low powered five-bar direct-drive parallel manipulator is designed and constructed to manipulate heavy tools suspended from a spring balancer. The validity, usefulness, and effectiveness of the suspended tool system are shown by experimental results.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper is concerned with multi-robot hunting in dynamic environments. A BCSLA approach is proposed to allow mobile robots to capture an intelligent evader. During the process of hunting, four states including dispersion-random-search, surrounding, catch and prediction are employed. In order to ensure each robot appropriate movement in each state, a series of strategies are developed in this paper. The dispersion-search strategy enables the robots to find the evader effectively. The leader-adjusting strategy aims to improve the hunting robots’ response to environmental changes and the outflank strategy is proposed for the hunting robots to force the evader to enter a besieging circle. The catch strategy is designed for shrinking the besieging circle to catch the evader. The predict strategy allows the robots to predict the evader’s position when they lose the tracking information about the evader. A novel collision-free motion strategy is also presented in this paper, which is called the direction-optimization strategy. To test the effect of cooperative hunting, the target to be captured owns a safety-motion strategy, which helps it to escape being captured. The computer simulations support the rationality of the approach.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

To perform under water robotic research requires specialized equipment. A few pieces of electronics atop a set of wheels is not going to cut it. An underwater research platform must be waterproof, reliable, robust, recoverable and easy to maintain. It must also be able to move in 3 dimensions. Finally it must be able to navigate and avoid obstacles. To purchase such a platform can be very expensive. However, for shallow water, a suitable platform can be built from mostly off the shelf items at little cost. This paper describes the design of one such underwater robot including various sensors and communications systems that allow for swarm robotics.