974 resultados para Robotic mapping
Resumo:
The cell catalysts calnexin (CNX) and protein-disulfide isomerase (PDI) cooperate in establishing the disulfide bonding of the HIV envelope (Env) glycoprotein. Following HIV binding to lymphocytes, cell-surface PDI also reduces Env to induce the fusogenic conformation. We sought to define the contact points between Env and these catalysts to illustrate their potential as therapeutic targets. In lysates of Env-expressing cells, 15% of the gp160 precursor, but not gp120, coprecipitated with CNX, whereas only 0.25% of gp160 and gp120 coprecipitated with PDI. Under in vitro conditions, which mimic the Env/PDI interaction during virus/cell contact, PDI readily associated with Env. The domains of Env interacting in cellulo with CNX or in vitro with PDI were then determined using anti-Env antibodies whose binding site was occluded by CNX or PDI. Antibodies against domains V1/V2, C2, and the C terminus of V3 did not bind CNX-associated Env, whereas those against C1, V1/V2, and the CD4-binding domain did not react with PDI-associated Env. In addition, a mixture of the latter antibodies interfered with PDI-mediated Env reduction. Thus, Env interacts with intracellular CNX and extracellular PDI via discrete, largely nonoverlapping, regions. The sites of interaction explain the mode of action of compounds that target these two catalysts and may enable the design of further new competitive agents.
Resumo:
The aim of this article is to identify the key factors that are associated with the adoption of a commercial robot in the home. This article is based on the development of the robot product Cybot by the University of Reading in conjunction with a publisher (Eaglemoss International Ltd.). The robots were distributed through a new part-work magazine series (Ultimate Real Robots) that had long-term customer usage and retention. A part-work is a serial publication that is issued periodically (e.g., every two weeks), usually in magazine format, and builds into a complete collection. This magazine focused on robotics and was accompanied by cover-mounted component parts that could be assembled, with instructions, by the user to build a working robot over the series. In total, the product contributed over half a million operational domestic robots to the world market, selling over 20 million robot part-work magazines across 18 countries, thereby providing a unique breadth of insight. Gaining a better understanding of the overall attitudes that customers of this product had toward robots in the home, their perception of what such devices could deliver and how they would wish to interact with them should provide results applicable to the domestic appliance, assistance/care, entertainment, and educational markets.
Resumo:
The authors address the problems in using a fiber-optic proximity sensor to detect robot end-effector positioning errors in performing a contact task when uncertainties about target position exist. An extended Kalman filter approach is employed to solve the nonlinear filtering problem. Some experimental results are given.
Resumo:
Spiking neural networks are usually limited in their applications due to their complex mathematical models and the lack of intuitive learning algorithms. In this paper, a simpler, novel neural network derived from a leaky integrate and fire neuron model, the ‘cavalcade’ neuron, is presented. A simulation for the neural network has been developed and two basic learning algorithms implemented within the environment. These algorithms successfully learn some basic temporal and instantaneous problems. Inspiration for neural network structures from these experiments are then taken and applied to process sensor information so as to successfully control a mobile robot.
Resumo:
Infections involving Salmonella enterica subsp. enterica serovars have serious animal and human health implications; causing gastroenteritis in humans and clinical symptoms, such as diarrhoea and abortion, in livestock. In this study an optical genetic mapping technique was used to screen 20 field isolate strains from four serovars implicated in disease outbreaks. The technique was able to distinguish between the serovars and the available sequenced strains and group them in agreement with similar data from microarrays and PFGE. The optical maps revealed variation in genome maps associated with antimicrobial resistance and prophage content in S. Typhimurium, and separated the S. Newport strains into two clear geographical lineages defined by the presence of prophage sequences. The technique was also able to detect novel insertions that may have had effects on the central metabolism of some strains. Overall optical mapping allowed a greater level of differentiation of genomic content and spatial information than more traditional typing methods.
Resumo:
In order to fabricate a biomimetic skin for an octopus inspired robot, a new process was developed based on mechanical properties measured from real octopus skin. Various knitted nylon textiles were tested and the one of 10-denier nylon was chosen as reinforcement. A combination of Ecoflex 0030 and 0010 silicone rubbers was used as matrix of the composite to obtain the right stiffness for the skin-analogue system. The open mould fabrication process developed allows air bubble to escape easily and the artificial skin produced was thin and waterproof. Material properties of the biomimetic skin were characterised using static tensile and instrumented scissors cutting tests. The Young’s moduli of the artificial skin are 0.08 MPa and 0.13 MPa in the longitudinal and transverse directions, which are much lower than those of the octopus skin. The strength and fracture toughness of the artificial skin, on the other hand are higher than those of real octopus skins. Conically-shaped skin prototypes to be used to cover the robotic arm unit were manufactured and tested. The biomimetic skin prototype was stiff enough to maintain it conical shape when filled with water. The driving force for elongation was reduced significantly compared with previous prototypes.
Resumo:
Department of Health staff wished to use systems modelling to discuss acute patient flows with groups of NHS staff. The aim was to assess the usefulness of system dynamics (SD) in a healthcare context and to elicit proposals concerning ways of improving patient experience. Since time restrictions excluded simulation modelling, a hybrid approach using stock/flow symbols from SD was created. Initial interviews and hospital site visits generated a series of stock/flow maps. A ‘Conceptual Framework’ was then created to introduce the mapping symbols and to generate a series of questions about different patient paths and what might speed or slow patient flows. These materials formed the centre of three workshops for NHS staff. The participants were able to propose ideas for improving patient flows and the elicited data was subsequently employed to create a finalized suite of maps of a general acute hospital. The maps and ideas were communicated back to the Department of Health and subsequently assisted the work of the Modernization Agency.
Resumo:
Very high-resolution Synthetic Aperture Radar sensors represent an alternative to aerial photography for delineating floods in built-up environments where flood risk is highest. However, even with currently available SAR image resolutions of 3 m and higher, signal returns from man-made structures hamper the accurate mapping of flooded areas. Enhanced image processing algorithms and a better exploitation of image archives are required to facilitate the use of microwave remote sensing data for monitoring flood dynamics in urban areas. In this study a hybrid methodology combining radiometric thresholding, region growing and change detection is introduced as an approach enabling the automated, objective and reliable flood extent extraction from very high-resolution urban SAR images. The method is based on the calibration of a statistical distribution of “open water” backscatter values inferred from SAR images of floods. SAR images acquired during dry conditions enable the identification of areas i) that are not “visible” to the sensor (i.e. regions affected by ‘layover’ and ‘shadow’) and ii) that systematically behave as specular reflectors (e.g. smooth tarmac, permanent water bodies). Change detection with respect to a pre- or post flood reference image thereby reduces over-detection of inundated areas. A case study of the July 2007 Severn River flood (UK) observed by the very high-resolution SAR sensor on board TerraSAR-X as well as airborne photography highlights advantages and limitations of the proposed method. We conclude that even though the fully automated SAR-based flood mapping technique overcomes some limitations of previous methods, further technological and methodological improvements are necessary for SAR-based flood detection in urban areas to match the flood mapping capability of high quality aerial photography.
Resumo:
The ground-based Atmospheric Radiation Measurement Program (ARM) and NASA Aerosol Robotic Net- work (AERONET) routinely monitor clouds using zenith ra- diances at visible and near-infrared wavelengths. Using the transmittance calculated from such measurements, we have developed a new retrieval method for cloud effective droplet size and conducted extensive tests for non-precipitating liquid water clouds. The underlying principle is to combine a liquid-water-absorbing wavelength (i.e., 1640 nm) with a non-water-absorbing wavelength for acquiring information on cloud droplet size and optical depth. For simulated stratocumulus clouds with liquid water path less than 300 g m−2 and horizontal resolution of 201 m, the retrieval method underestimates the mean effective radius by 0.8μm, with a root-mean-squared error of 1.7 μm and a relative deviation of 13%. For actual observations with a liquid water path less than 450 g m−2 at the ARM Oklahoma site during 2007– 2008, our 1.5-min-averaged retrievals are generally larger by around 1 μm than those from combined ground-based cloud radar and microwave radiometer at a 5-min temporal resolution. We also compared our retrievals to those from combined shortwave flux and microwave observations for relatively homogeneous clouds, showing that the bias between these two retrieval sets is negligible, but the error of 2.6 μm and the relative deviation of 22 % are larger than those found in our simulation case. Finally, the transmittance-based cloud effective droplet radii agree to better than 11 % with satellite observations and have a negative bias of 1 μm. Overall, the retrieval method provides reasonable cloud effective radius estimates, which can enhance the cloud products of both ARM and AERONET.
Resumo:
This paper charts the current evidence on effectiveness of different anti-corruption reforms, and identifies significant evidence gaps. Despite a substantial amount of literature on corruption, this review found very few studies focusing on anti-corruption reforms, and even fewer that credibly assess issues of effectiveness and impact. The evidence was strong for only two types of interventions: public financial management (PFM) reforms and supreme audit institutions (SAIs). For PFM, the evidence in general showed positive results, whereas the effectiveness was mixed for SAIs. No strong evidence indicates that any of the interventions pursued have been ineffective, but there is fair evidence that anti-corruption authorities, civil service reforms and the use of corruption conditionality in aid allocation decisions in general have not been effective. The paper advocates more operationally-relevant research and rigorous evaluations to build up the missing evidence base, particularly in conflict-afflicted states, in regards to the private sector, and on the interactions and interdependencies between different anti-corruption interventions.
Resumo:
Robotic multiwell planar patch-clamp has become common in drug development and safety programs because it enables efficient and systematic testing of compounds against ion channels during voltage-clamp. It has not, however, been adopted significantly in other important areas of ion channel research, where conventional patch-clamp remains the favored method. Here, we show the wider potential of the multiwell approach with the ability for efficient intracellular solution exchange, describing protocols and success rates for recording from a range of native and primary mammalian cells derived from blood vessels, arthritic joints and the immune and central nervous systems. The protocol involves preparing a suspension of single cells to be dispensed robotically into 4-8 microfluidic chambers each containing a glass chip with a small aperture. Under automated control, giga-seals and whole-cell access are achieved followed by preprogrammed routines of voltage paradigms and fast extracellular or intracellular solution exchange. Recording from 48 chambers usually takes 1-6 h depending on the experimental design and yields 16-33 cell recordings.
Resumo:
The All-Weather Volcano Topography Imaging Sensor remote sensing instrument is a custom-built millimeter-wave (MMW) sensor that has been developed as a practical field tool for remote sensing of volcanic terrain at active lava domes. The portable instrument combines active and passive MMW measurements to record topographic and thermal data in almost all weather conditions from ground-based survey points. We describe how the instrument is deployed in the field, the quality of the primary ranging and radiometric measurements, and the postprocessing techniques used to derive the geophysical products of the target terrain, surface temperature, and reflectivity. By comparison of changing topography, we estimate the volume change and the lava extrusion rate. Validation of the MMW radiometry is also presented by quantitative comparison with coincident infrared thermal imagery.