991 resultados para River sediments -- Catalonia -- Ter (River)
Resumo:
Iron in seawater is an essential trace metal for phytoplankton that plays an important role in the marine carbon cycle. But most studies focused on oceanic iron fertilization in high nutrient low chlorophyll (HNLC) seawaters. A study of inorganic carbon (IC) forms and its influencing factors was presented in Liaodong Gulf sediments, and especially the influence of iron was discussed in detail. Inorganic carbon in Liaodong Gulf sediments was divided into five forms: NaCl, NH3·H2O, NaOH, NH2OH·HCl and HCl. The concentration of NaCl and NaOH forms were similar and they only occupied the minority of total inorganic carbon (TIC). However, NH3·H2O, NH2OH·HCl and HCl forms were the principal forms of TIC and accounted for more than 80% of TIC. Especially, the percentage of NH3·H2O form was much higher than that in the Changjiang River Estuary and Jiaozhou Bay sediments. All forms of inorganic carbon were influenced by organic carbon,pore water, iron, pH, redox potential(Eh) and sulfur potential(Es) in sediments, moreover, the influences had different characteristics for different IC forms. However, the redox reactions of iron affected mainly active IC forms. Iron had little effect on NH2OH·HCl and HCl forms of IC which were influenced mainly by pH. Iron had a stronger influence on NaCl, NaOH and NH3·H2O forms of IC; the influence of Fe2+ was higher than Fe3+ and its effect on NH3·H2O form was stronger than on NaCl and NaOH forms.
Resumo:
We present an analysis of extensive nutrient data sets from two river-dominated coastal ecosystems, the northern Adriatic Sea and the northern Gulf of Mexico, demonstrating significant changes in surface nutrient ratios over a period of 30 years. The silicon:nitrogen ratios have decreased, indicating increased potential for silicon limitation. The nitrogen:phosphorus and the silicon:phosphorus ratios have also changed substantially, and the coastal nutrient structures have become more balanced and potentially less limiting for phytoplankton growth. It is likely that net phytoplankton productivity increased under these conditions and was accompanied by increasing bottom water hypoxia and major changes in community species composition. These findings support the hypothesis that increasing coastal eutrophication to date may be associated with stoichiometric nutrient balance, due to increasing potential for silicon limitation and decreasing potential for nitrogen and phosphorus limitation. On a worldwide basis, coastal ecosystems adjacent to rivers influenced by anthropogenic nutrient loads may experience similar alterations.
Resumo:
National Natural Science Foundation of China [40701021, 40625002, 40331013]; National Knowledge Innovation Program of Chinese Academy of Sciences [KZCX2-YW-315-2]
Resumo:
National Natural Science Foundation of China [40471134]; program of Lights of the West China by the Chinese Academy of Science
Resumo:
Four models are employed in the landscape change detection of the newly created wetland. The models include ones for patch connectivity. ecological diversity, human impact intensity and mean center of land cover. The landscape data of the newly created wetland in Yellow River Delta in 1984, 1991, and 1996 are produced from the unsupervised classification and the supervised classification on the basis of integrating Landsat TM images of the newly created wetland in the four seasons of the each year. The result from operating the models into the data shows that the newly created wetland landscape in Yellow River Delta had a great chance. The driving focus of the change are mainly from natural evolution of the newly created wetland and rapid population growth, especially non-peasant population growth in Yellow River Delta because a considerable amount of oil and gas fields have been found in the Yellow River Delta. For preventing the newly created wetland from more destruction and conserving benign Succession of the ecosystems in the newly created wetland, six measures are suggested on the basis of research results. (C) 2003 Elsevier Science B.V. All rights reserved.