936 resultados para Ring Contraction


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Signatur des Originals: S 36/F10234

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Signatur des Originals: S 36/F10697

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Signatur des Originals: S 36/F10710

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Signatur des Originals: S 36/F12383

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Effective family support strategies offer early intervention and help for families and children at risk of experiencing social exclusion and maltreatment. This paper reports a study which evaluated client outcomes from participation in an Intensive Family Support Service by comparing views of workers and service users on perceived benefits. It profiles the characteristics and circumstances of families recruited to service, services and interventions delivered and the potential of IFSS to lead to safe and positive outcomes for children and families. Findings discussed highlight the individualized and collaborative approach and the high degree of engagement with service users that facilitated gains in the domains of child and family functioning targeted. Implications of the findings for policy and practice in responding to vulnerable families and children are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Regulation of uterine quiescence involves the integration of the signaling pathways regulating uterine contraction and relaxation. Uterine contractants increase intracellular calcium through receptor/GαqPLC coupling, resulting in contraction of the myometrium. Elevation of cAMP concentration has been correlated with relaxation of the myometrium. However, the mechanism of cAMP action in the uterus is unclear. ^ Both endogenous and exogenous increases in cAMP inhibited oxytocin-stimulated phosphatidylinositide turnover in an immortalized pregnant human myometrial cell line (PHM1-41). This inhibition was reversed by cAMP-dependent protein kinase (PKA) inhibitors, suggesting the involvement of PKA. cAMP inhibited phosphatidyinositide turnover stimulated by different agonists in different cell lines. These data suggest that the cAMP inhibitory mechanism is neither cell nor receptor dependent, and inhibits Gαq/PLCβ1 and PLCβ3 coupling. ^ The subcellular localization of PKA occurs via PKA binding to A-Kinase-Anchoring-Proteins (AKAP), and peptides that inhibit this association have been developed (S-Ht31). S-Ht31 blocked cAMP-stimulated PKA activity and decreased PKA concentration in PHM1-41 cell plasma membranes. S-Ht31 reversed the ability of CPT-cAMP, forskolin and relaxin to inhibit phosphatidylinositide turnover in PHM1-41 cells. Overlay analysis of both PHM1-41 cell and nonpregnant rat myometrium found an AKAPs of 86 kDa and 150 kDa associated with the plasma membrane, respectively. These data suggest that PKA anchored to the plasma membrane via AKAP150/PKA anchoring is involved in the cAMP inhibitory mechanism. ^ CPT-cAMP and isoproterenol inhibited phosphatidylinositide turnover in rat myometrium from days 12 through 20 of gestation. In contrast, neither agent was effective in the 21 day pregnant rat myometrium. The decrease in the cAMP inhibitory mechanism was correlated with a decrease in PKA and an increase in protein phosphatase 2B (PP2B) concentration in rat myometrial plasma membranes on day 21 of gestation. In myometrial total cell homogenates, both PKA and PP2B concentration increased on day 21. S-Ht31 inhibited cAMP inhibition of phosphatidylinositide turnover in day 19 pregnant rat myometrium. Both PKA and PP2B coimmunoprecipitated with an AKAP150 in a gestational dependent manner, suggesting this AKAP localizes PKA and PP2B to the plasma membrane. ^ These data presented demonstrate the importance of the cAMP inhibitory mechanism in regulating uterine contractility. ^