969 resultados para Reynolds Average Navier-Stokes (RANS)
Resumo:
The Average White Band's debut album, Show your hand, was released in 1973. The "classic funk and R & B" band included members Alan Gorrie, Owen "Onnie" McIntyre, Malcolm "Mollie" Duncan, Roger Ball, Robbie McIntosh, and Mike Rosen. Rosen was quickly replaced by Hamish Stuart. The band, comprised of Scotsmen, released a second album in 1974 that featured the US number 1/UK Top 10 single "Pick up the Pieces". That same year, Robbie McIntosh died of a heroin overdose and was replaced by Steve Ferrone. The song "Cut the Cake" from their third album made the US top 10, and subsequent releases in the late 1970s and early 1980s proved successful. The members largely pursued individual projects in the years that followed, but re-formed in 1989 (with original members Gorrie, Ball and McIntyre, and new members Alex Ligertwood and Eliot Lewis) and released the album Aftershock. Over the years, the band's members have changed, and the band is currently comprised of Onnie McIntyre, Rocky Bryant, Alan Gorrie, Fred "Freddy V" Vigdor and Klyde Jones. Their most recent album, Times Squared, was released in 2009.
Resumo:
Cette thèse de doctorat présente les résultats d'un relevé spectropolarimétrique visant la détection directe de champs magnétiques dans le vent d'étoiles Wolf-Rayet (WR). Les observations furent entièrement obtenues à partir du spectropolarimètre ESPaDOnS, installé sur le télescope de l'observatoire Canada-France-Hawaii. Ce projet débuta par l'observation d'un étoile très variable de type WN4 appelée EZ CMa = WR6 = HD 50896 et se poursuivit par l'observation de 11 autres étoiles WR de notre galaxie. La méthode analytique utilisée dans cette étude vise à examiner les spectres de polarisation circulaire (Stokes V) et à identifier, au travers des raies d'émission, les signatures spectrales engendrées par la présence de champs magnétiques de type split monopole dans les vents des étoiles observées. Afin de pallier à la présence de polarisation linéaire dans les données de polarisation circulaire, le cross-talk entre les spectres Stokes Q et U et le spectre Stokes V fut modélisé et éliminé avant de procéder à l'analyse magnétique. En somme, aucun champ magnétique n'est détecté de manière significative dans les 12 étoiles observées. Toutefois, une détection marginale est signalée pour les étoiles WR134, WR137 et WR138 puisque quelques-unes de leur raies spectrales semblent indiquer la présence d'une signature magnétique. Pour chacune de ces trois étoiles, la valeur la plus probable du champ magnétique présent dans le vent stellaire est respectivement de B ~ 200, 130 et 80 G. En ce qui concerne les autres étoiles pour lesquelles aucune détection magnétique ne fut obtenue, la limite supérieure moyenne de l'intensité du champ qui pourrait être présent dans les données, sans toutefois être détecté, est évaluée à 500 G. Finalement, les résultats de cette étude ne peuvent confirmer l'origine magnétique des régions d'interaction en co-rotation (CIR) observées chez plusieurs étoiles WR. En effet, aucun champ magnétique n'est détecté de façon convaincante chez les quatre étoiles pour lesquelles la présence de CIR est soupçonnée.
Resumo:
Il est connu qu’une équation différentielle linéaire, x^(k+1)Y' = A(x)Y, au voisinage d’un point singulier irrégulier non-résonant est uniquement déterminée (à isomorphisme analytique près) par : (1) sa forme normale formelle, (2) sa collection de matrices de Stokes. La définition des matrices de Stokes fait appel à un ordre sur les parties réelles des valeurs propres du système, ordre qui peut être perturbé par une rotation en x. Dans ce mémoire, nous avons établi le caractère intrinsèque de cette relation : nous avons donc établi comment la nouvelle collection de matrices de Stokes obtenue après une rotation en x qui change l’ordre des parties réelles des valeurs propres dépend de la collection initiale. Pour ce faire, nous donnons un chapitre de préliminaires généraux sur la forme normale des équations différentielles ordinaires puis un chapitre sur le phénomène de Stokes pour les équations différentielles linéaires. Le troisième chapitre contient nos résultats.
Resumo:
The thesis report results obtained from a detailed analysis of the fluctuations of the rheological parameters viz. shear and normal stresses, simulated by means of the Stokesian Dynamics method, of a macroscopically homogeneous sheared suspension of neutrally buoyant non-Brownian suspension of identical spheres in the Couette gap between two parallel walls in the limit of vanishingly small Reynolds numbers using the tools of non-linear dynamics and chaos theory for a range of particle concentration and Couette gaps. The thesis used the tools of nonlinear dynamics and chaos theory viz. average mutual information, space-time separation plots, visual recurrence analysis, principal component analysis, false nearest-neighbor technique, correlation integrals, computation of Lyapunov exponents for a range of area fraction of particles and for different Couette gaps. The thesis observed that one stress component can be predicted using another stress component at the same area fraction. This implies a type of synchronization of one stress component with another stress component. This finding suggests us to further analysis of the synchronization of stress components with another stress component at the same or different area fraction of particles. The different model equations of stress components for different area fraction of particles hints at the possible existence a general formula for stress fluctuations with area fraction of particle as a parameter
Resumo:
The average availability of a repairable system is the expected proportion of time that the system is operating in the interval [0, t]. The present article discusses the nonparametric estimation of the average availability when (i) the data on 'n' complete cycles of system operation are available, (ii) the data are subject to right censorship, and (iii) the process is observed upto a specified time 'T'. In each case, a nonparametric confidence interval for the average availability is also constructed. Simulations are conducted to assess the performance of the estimators.
Resumo:
Thomas-Fermi theory is developed to evaluate nuclear matrix elements averaged on the energy shell, on the basis of independent particle Hamiltonians. One- and two-body matrix elements are compared with the quantal results, and it is demonstrated that the semiclassical matrix elements, as function of energy, well pass through the average of the scattered quantum values. For the one-body matrix elements it is shown how the Thomas-Fermi approach can be projected on good parity and also on good angular momentum. For the two-body case, the pairing matrix elements are considered explicitly.
Resumo:
Semiclassical theories such as the Thomas-Fermi and Wigner-Kirkwood methods give a good description of the smooth average part of the total energy of a Fermi gas in some external potential when the chemical potential is varied. However, in systems with a fixed number of particles N, these methods overbind the actual average of the quantum energy as N is varied. We describe a theory that accounts for this effect. Numerical illustrations are discussed for fermions trapped in a harmonic oscillator potential and in a hard-wall cavity, and for self-consistent calculations of atomic nuclei. In the latter case, the influence of deformations on the average behavior of the energy is also considered.
Resumo:
The method of approximate approximations is based on generating functions representing an approximate partition of the unity, only. In the present paper this method is used for the numerical solution of the Poisson equation and the Stokes system in R^n (n = 2, 3). The corresponding approximate volume potentials will be computed explicitly in these cases, containing a one-dimensional integral, only. Numerical simulations show the efficiency of the method and confirm the expected convergence of essentially second order, depending on the smoothness of the data.
Resumo:
The method of approximate approximations, introduced by Maz'ya [1], can also be used for the numerical solution of boundary integral equations. In this case, the matrix of the resulting algebraic system to compute an approximate source density depends only on the position of a finite number of boundary points and on the direction of the normal vector in these points (Boundary Point Method). We investigate this approach for the Stokes problem in the whole space and for the Stokes boundary value problem in a bounded convex domain G subset R^2, where the second part consists of three steps: In a first step the unknown potential density is replaced by a linear combination of exponentially decreasing basis functions concentrated near the boundary points. In a second step, integration over the boundary partial G is replaced by integration over the tangents at the boundary points such that even analytical expressions for the potential approximations can be obtained. In a third step, finally, the linear algebraic system is solved to determine an approximate density function and the resulting solution of the Stokes boundary value problem. Even not convergent the method leads to an efficient approximation of the form O(h^2) + epsilon, where epsilon can be chosen arbitrarily small.
Resumo:
We consider a first order implicit time stepping procedure (Euler scheme) for the non-stationary Stokes equations in smoothly bounded domains of R3. Using energy estimates we can prove optimal convergence properties in the Sobolev spaces Hm(G) (m = 0;1;2) uniformly in time, provided that the solution of the Stokes equations has a certain degree of regularity. For the solution of the resulting Stokes resolvent boundary value problems we use a representation in form of hydrodynamical volume and boundary layer potentials, where the unknown source densities of the latter can be determined from uniquely solvable boundary integral equations’ systems. For the numerical computation of the potentials and the solution of the boundary integral equations a boundary element method of collocation type is used. Some simulations of a model problem are carried out and illustrate the efficiency of the method.
Resumo:
The aim of this paper is the numerical treatment of a boundary value problem for the system of Stokes' equations. For this we extend the method of approximate approximations to boundary value problems. This method was introduced by V. Maz'ya in 1991 and has been used until now for the approximation of smooth functions defined on the whole space and for the approximation of volume potentials. In the present paper we develop an approximation procedure for the solution of the interior Dirichlet problem for the system of Stokes' equations in two dimensions. The procedure is based on potential theoretical considerations in connection with a boundary integral equations method and consists of three approximation steps as follows. In a first step the unknown source density in the potential representation of the solution is replaced by approximate approximations. In a second step the decay behavior of the generating functions is used to gain a suitable approximation for the potential kernel, and in a third step Nyström's method leads to a linear algebraic system for the approximate source density. For every step a convergence analysis is established and corresponding error estimates are given.
Resumo:
El manejo del trauma abdominal supone el reto de realizar una anastomosis o sutura intestinal en pacientes comprometidos hemodinámicamente. La decisión de cirugía de control de daños ante la presencia de acidosis, hipotermia y coagulopatía es evidente, sin embargo la situación no siempre es tan clara. En individuos con trauma se desarrollan cambios moleculares e inflamatorios por inadecuado balance entre aporte y demanda de oxígeno, que afectan el proceso de reparación de los tejidos con el riesgo de aparición de fístulas. Una forma rápida y práctica de detectar esta hipoperfusión es midiendo la saturación venosa de oxígeno (SVO2) y el Lactato Sérico. OBJETIVOS: Establecer correlación entre los valores de SVO2 transoperatorio y la aparición de fístulas intestinales en pacientes intervenidos por trauma abdominal. MATERIALES Y METODOS: Estudio de cohorte prospectivo que analiza diferentes variables en relación con la aparición de fistulas en pacientes con trauma abdominal que requieren suturas en el tracto gastrointestinal, haciendo énfasis en los niveles de SVO2. RESULTADOS: Los pacientes con falla anastomótica, presentaron un promedio de SVO2 más baja (60.0% ± 2.94%), versus los no fistulizados (69.89% ± 7.21%) (p =0.010). Todos los pacientes de la cohorte expuesta (SVO2<65%), presentaron dehiscencia de la anastomosis (RR =39.8, IC95%: 2.35,659.91, p<0.001, Test exacto de Fisher). El valor predictivo positivo de la saturación (<65%) fue de 57.14% (IC 95%: 13.34%, 100%) y el valor predictivo negativo fue de 100% (IC 95%:81.75%, 100%). La sensibilidad fue de 100% (IC 95%:87.50%, 100%) y especificidad de 91.89% (IC 95%: 81.75%, 100%). En el análisis bivariante determinó que el índice de trauma abdominal, el nivel de hemoglobina y el requerimiento de transfusión de glóbulos rojos, son factores de riesgo directamente relacionados con la falla de la anastomosis en pacientes con trauma abdominal CONCLUSIONES: - Hay una fuerte relación entre la falla en la reparación intestinal y SVO2 < 65%. - El pronóstico de una anastomosis intestinal está directamente relacionada con el estado hemodinámico y la perfusión tisular al momento de la intervención quirúrgica. - El nivel de SVO2 puede apoyar al cirujano en la decisión de realizar o no una reparación en víscera hueca al momento de intervención quirúrgica en un paciente con trauma abdominal.
Resumo:
Introducción: El Aislamiento de Venas Pulmonares (AVP) es un procedimiento de alto costo al cual son sometidos pacientes con riesgo cardiovascular elevado. Requiere un alto grado de especialización en el personal médico y paramédico que lo ejecuta, con curvas de aprendizaje que sobrepasan los dos años de formación académica y entrenamiento específico. Metodología: Se realizó un estudio de cohorte retrospectivo, donde se incluyeron 88 sujetos sometidos al procedimiento en el lapso comprendido entre el 1º de enero y el 31 de diciembre de 2013, con el objetivo de evaluar su proceso de atención en el Centro Internacional de Arritmias ‘Andrea Natale’ de la FCI – Instituto de Cardiología. Se realizó análisis de regresión lineal y logística múltiple. Resultados: Se encontró que en el 97,73%% de los pacientes el diagnóstico principal era algún tipo de Fibrilación Auricular (FA); a su vez, la comorbilidad más frecuente fue HTA en el 30,68% y ningún paciente presentaba enfermedad coronaria, no hubo diferencias significativas por sexo. La complicación peri operatoria tuvo una incidencia del 3,41%, el 22,73% requirió ingreso a UCI con un promedio de días estancia 0,25+0,51. El 98,86% de la población estudiada recibió educación pos procedimiento acerca de sus cuidados y signos de alarma. Los factores encontrados en el estudio que afectan la duración del procedimiento y la estancia hospitalaria son las interconsultas pre procedimiento, el manejo médico de la cardiomiopatía de base y el uso de anti agregantes plaquetarios pre procedimiento; los cuales, son puntos por mejorar previo al ingreso o programación del paciente para ser llevado a AVP. Discusión: Como recomendaciones específicas se destacan: La necesidad de incluir en el protocolo de preparación para ablación de venas pulmonares la realización de interconsultas a las especialidades requeridas, antes de su ingreso para la realización del procedimiento. Es importante que el paciente que lo amerite haga parte de un programa de falla cardiaca previamente al procedimiento