932 resultados para Reverse mutation
Resumo:
Abstract Several monogenic defects have been reported to be associated with idiopathic short stature. Focusing on growth hormone receptor (GHR)-gene alterations, the heterozygosity of the same gene defect may be associated with a range of growth deficits. We found a heterozygous mutation (V144I) within exon 6 of the GHR gene in a patient with a low level of insulin-like growth factor I (IGF-I), normal level of GH, and severe short stature. Despite the lack of statistical difference, an overall tendency for reduced wt-GH-induction of GHR activation and Jak/Stat signalling in cells transiently expressing GHR-V144I alone or co-expressing wt-GHR compared to cells expressing only wt-GHR was found when GH doses were increased. Our results suggest that, although GHR sequence variants are responsible for some functional alterations commonly observed in children with idiopathic short stature, these changes may not explain all the height deficits observed in these subjects.
Resumo:
BACKGROUND P450 aromatase (CYP19A1) is essential for the biosynthesis of estrogens from androgen precursors. Mutations in the coding region of CYP19A1 lead to autosomal recessive aromatase deficiency. To date over 20 subjects have been reported with aromatase deficiency which may manifest during fetal life with maternal virilization and virilization of the external genitalia of a female fetus due to low aromatase activity in the steroid metabolizing fetal-placental unit and thus high androgen levels. During infancy, girls often have ovarian cysts and thereafter fail to enter puberty showing signs of variable degree of androgen excess. Moreover, impact on growth, skeletal maturation and other metabolic parameters is seen in both sexes. OBJECTIVE AND HYPOTHESIS We found a novel homozygous CYP19A1 mutation in a 46,XX girl who was born at term to consanguineous parents. Although the mother did not virilize during pregnancy, the baby was found to have a complex genital anomaly at birth (enlarged genital tubercle, fusion of labioscrotal folds) with elevated androgens at birth, normalizing thereafter. Presence of 46,XX karyotype and female internal genital organs (uterus, vagina) together with biochemical findings and follow-up showing regression of clitoral hypertrophy, as well as elevated FSH suggested aromatase deficiency. Interestingly, her older brother presented with mild hypospadias and bilateral cryptorchidism and was found to carry the same homozygous CYP19A1 mutation. To confirm the clinical diagnosis, genetic, functional and computational studies were performed. METHODS AND RESULTS Genetic analysis revealed a homozygous R192H mutation in the CYP19A1 gene. This novel mutation was characterized for its enzymatic activity (Km, Vmax) in a cell model and found to have markedly reduced catalytic activity when compared to wild-type aromatase; thus explaining the phenotype. Computational studies suggest that R192H disrupts the substrate access channel in CYP19A1 that may affect binding of substrates and exit of catalytic products. CONCLUSION R192H is a novel CYP19A1 mutation which causes a severe phenotype of aromatase deficiency in a 46,XX newborn and maybe hypospadias and cryptorchidism in a 46,XY, but no maternal androgen excess during pregnancy.
Resumo:
BackgroundThe polysaccharide capsule is a major virulence factor of the important human pathogen Streptococcus pneumoniae. However, S. pneumoniae strains lacking capsule do occur.ResultsHere, we report a nasopharyngeal isolate of Streptococcus pneumoniae composed of a mixture of two phenotypes; one encapsulated (serotype 18C) and the other nonencapsulated, determined by serotyping, electron microscopy and fluorescence isothiocyanate dextran exclusion assay.By whole genome sequencing, we demonstrated that the phenotypes differ by a single nucleotide base pair in capsular gene cpsE (C to G change at gene position 1135) predicted to result in amino acid change from arginine to glycine at position 379, located in the cytoplasmic, enzymatically active, region of this transmembrane protein. This SNP is responsible for loss of capsule production as the phenotype is transferred with the capsule operon. The nonencapsulated variant is superior in growth in vitro and is also 117-fold more adherent to and more invasive into Detroit 562 human epithelial cells than the encapsulated variant.Expression of six competence pathway genes and one competence-associated gene was 11 to 34-fold higher in the nonencapsulated variant than the encapsulated and transformation frequency was 3.7-fold greater.ConclusionsWe identified a new single point mutation in capsule gene cpsE of a clinical S. pneumoniae serotype 18C isolate sufficient to cause loss of capsule expression resulting in the co-existence of the encapsulated and nonencapsulated phenotype. The mutation caused phenotypic changes in growth, adherence to epithelial cells and transformability. Mutation in capsule gene cpsE may be a way for S. pneumoniae to lose its capsule and increase its colonization potential.
Resumo:
Congenital distal renal tubular acidosis (dRTA) from mutations of the B1 subunit of the V-ATPase is considered an autosomal recessive disease. We analyzed a dRTA kindred with a truncation-mutation of B1 (p.Phe468fsX487) previously shown to have failure of assembly into the V1 domain of the V-ATPase. All heterozygous carriers in this kindred have normal plasma bicarbonate concentrations, thus evaded the diagnosis of RTA. However, inappropriately high urine pH, hypocitraturia, and hypercalciuria are present either individually or in combination in the heterozygotes at baseline. Two of the heterozygotes studied also have inappropriate urinary acidification with acute ammonium chloride loading and impaired urine-blood pCO2 gradient during bicarbonaturia indicating presence of H+ gradient and flux defects. In normal human renal papillae, wild type B1 is located primarily on the plasma membrane but papilla from one of the heterozygote who had kidney stones had renal tissue secured from surgery showed B1 in both plasma membrane as well as a diffuse intracellular staining. Titrating increasing amounts of the mutant B1 subunit did not exhibit negative dominance over the expression, cellular distribution, or H+-pump activity of the wild type B1 in mammalian HEK293 cells and in V-ATPase-deficient S. cerevisiae. This is the first demonstration of renal acidification defects and nephrolithiasis in heterozygous carriers of mutant B1 subunit; which cannot be attributable to negative dominance. We propose that heterozygosity may lead to mild real acidification defects due to haploinsufficiency. B1 heterozygosity should be considered in patients with calcium nephrolithiasis and urinary abnormalities such as alkalinuria or hypocitraturia.
Resumo:
BACKGROUND Cavalier King Charles Spaniels (CKCS) have a high prevalence of inherited macrothrombocytopenia. The purpose of this study was to determine if a mutation in beta1-tubulin correlated with presumptive inherited macrothrombocytopenia. HYPOTHESIS A mutation in beta1-tubulin results in synthesis of an altered beta1-tubulin monomer. alpha-beta tubulin dimers within microtubule protofilaments are unstable, resulting in altered megakaryocyte proplatelet formation. ANIMALS Blood samples were obtained from CKCS and non-CKCS dogs. METHODS DNA was used in polymerase chain reaction (PCR) assays to evaluate beta1-tubulin. Platelet numbers and mean platelet volume (MPV) were evaluated for a correlation with the presence or absence of a mutation identified in beta1-tubulin. Platelets obtained from homozygous, heterozygous, and clear CKCS were further evaluated using electron microscopy and immunofluorescence. RESULTS A mutation in the gene encoding beta1-tubulin correlated with macrothrombocytopenia in CKCS. Electron microscopy and immunofluorescence studies suggest that platelet microtubules are present but most likely are unstable and decreased in number. CONCLUSIONS AND CLINICAL IMPORTANCE The macrothrombocytopenia of CKCS correlated with a mutation in beta1-tubulin. alpha-beta tubulin dimers within protofilaments most likely are unstable, leading to altered proplatelet formation by megakaryocytes. This information will aid in distinguishing inherited from acquired thrombocytopenia. It also provides insight into the mechanism of platelet production by megakaryocytes, and also may prove useful in understanding heart-related changes in macrothrombocytopenic CKCS with concurrent mitral valve regurgitation.
Resumo:
Introduction: HIV-1 viral escape in the cerebrospinal fluid (CSF) despite viral suppression in plasma is rare [1,2]. We describe the case of a 50-year-old HIV-1 infected patient who was diagnosed with HIV-1 in 1995. Antiretroviral therapy (ART) was started in 1998 with a CD4 T cell count of 71 cells/ìL and HIV-viremia of 46,000 copies/mL. ART with zidovudine (AZT), lamivudine (3TC) and efavirenz achieved full viral suppression. After the patient had interrupted ART for two years, treatment was re-introduced with tenofovir (TDF), emtricitabin (FTC) and ritonavir boosted atazanavir (ATVr). This regimen suppressed HIV-1 in plasma for nine years and CD4 cells stabilized around 600 cells/ìL. Since July 2013, the patient complained about severe gait ataxia and decreased concentration. Materials and Methods: Additionally to a neurological examination, two lumbar punctures, a cerebral MRI and a neuropsycological test were performed. HIV-1 viral load in plasma and in CSF was quantified using Cobas TaqMan HIV-1 version 2.0 (Cobas Ampliprep, Roche diagnostic, Basel, Switzerland) with a detection limit of 20 copies/mL. Drug resistance mutations in HIV-1 reverse transcriptase and protease were evaluated using bulk sequencing. Results: The CSF in January 2014 showed a pleocytosis with 75 cells/ìL (100% mononuclear) and 1,184 HIV-1 RNA copies/mL, while HIV-1 in plasma was below 20 copies/mL. The resistance testing of the CSF-HIV-1 RNA showed two NRTI resistance-associated mutations (M184V and K65R) and one NNRTI resistance-associated mutation (K103N). The cerebral MRI showed increased signal on T2-weighted images in the subcortical and periventricular white matter, in the basal ganglia and thalamus. Four months after ART intensification with AZT, 3TC, boosted darunavir and raltegravir, the pleocytosis in CSF cell count normalized to 1 cell/ìL and HIV viral load was suppressed. The neurological symptoms improved; however, equilibrium disturbances and impaired memory persisted. The neuro-psychological evaluation confirmed neurocognitive impairments in executive functions, attention, working and nonverbal memory, speed of information processing, visuospatial abilities and motor skills. Conclusions: HIV-1 infected patients with neurological complaints prompt further investigations of the CSF including measurement of HIV viral load and genotypic resistance testing since isolated replication of HIV with drug resistant variants can rarely occur despite viral suppression in plasma. Optimizing ART by using drugs with improved CNS penetration may achieve viral suppression in CSF with improvement of neurological symptoms.