962 resultados para Retinoic Acid Receptor
Resumo:
CD30 is a member of the tumor necrosis factor (TNF) receptor superfamily. CD30 is expressed on normal activated lymphocytes, on several virally transformed T- or B-cell lines and on neoplastic cells of Hodgkin's lymphoma. The interaction of CD30 with its ligand induces pleiotropic effects on cells resulting in proliferation, differentiation, or death. The CD30 cytoplasmic tail interacts with TNF receptor-associated factors (TRAFs), which have been shown to transduce signals mediated by TNF-R2 and CD40. We demonstrate here that TRAF2 also plays an important role in CD30-induced NF-kappa B activation. We also show that TRAF2-mediated activation of NF-kappa B plays a role in the activation of HIV transcription induced by CD30 cross-linking. Detailed site-directed mutagenesis of the CD30 cytoplasmic tail reveals that there are two independent binding sites for TRAF, each interacting with a different domain of TRAF. Furthermore, we localized the TRAF-C binding site in CD30 to a 5-7 amino acid stretch.
Resumo:
The mosquito (Aedes aegypti) vitellogenin receptor (AaVgR) is a large membrane-bound protein (214 kDa when linearized) that mediates internalization of vitellogenin, the major yolk-protein precursor, by oocytes during egg development. We have cloned and sequenced two cDNA fragments encompassing the entire coding region of AaVgR mRNA, to our knowledge the first insect VgR sequence to be reported. The 7.3-kb AaVgR mRNA is present only in female germ-line cells and is abundant in previtellogenic oocytes, suggesting that the AaVgR gene is expressed early in oocyte differentiation. The deduced amino acid sequence predicts a 202.7-kDa protein before posttranslational processing. The AaVgR is a member of the low density lipoprotein receptor superfamily, sharing significant homology with the chicken (Gallus gallus) VgR and particularly the Drosophila melanogaster yolk protein receptor, in spite of a very different ligand for the latter. Distance-based phylogenetic analyses suggest that the insect VgR/yolk protein receptor lineage and the vertebrate VgR/low density lipoprotein receptor lineage diverged before the bifurcation of nematode and deuterostome lines.
Resumo:
Ciliary neurotrophic factor (CNTF) drives the sequential assembly of a receptor complex containing the ligand-specific alpha-receptor subunit (CNTFR alpha) and the signal transducers gp130 and leukemia inhibitory factor receptor-beta (LIFR). The D1 structural motif, located at the beginning of the D-helix of human CNTF, contains two amino acid residues, F152 and K155, which are conserved among all cytokines that signal through LIFR. The functional importance of these residues was assessed by alanine mutagenesis. Substitution of either F152 or K155 with alanine was found to specifically inhibit cytokine interaction with LIFR without affecting binding to CNTFR alpha or gp130. The resulting variants behaved as partial agonists with varying degrees of residual bioactivity in different cell-based assays. Simultaneous alanine substitution of both F152 and K155 totally abolished biological activity. Combining these mutations with amino acid substitutions in the D-helix, which enhance binding affinity for the CNTFR alpha, gave rise to a potent competitive CNTF receptor antagonist. This protein constitutes a new tool for studies of CNTF function in normal physiology and disease.
Resumo:
Recently, a large family of transducer proteins in the Archaeon Halobacterium salinarium was identified. On the basis of the comparison of the predicted structural domains of these transducers, three distinct subfamilies of transducers were proposed. Here we report isolation, complete gene sequences, and analysis of the encoded primary structures of transducer gene htrII, a member of family B, and its blue light receptor gene (sopII) of sensory rhodopsin II (SRII). The start codon ATG of the 714-bp sopII gene is one nucleotide beyond the termination codon TGA of the 2298-bp htrII gene. The deduced protein sequence of HtrII predicts a eubacterial chemotaxis transducer type with two hydrophobic membrane-spanning segments connecting sizable domains in the periplasm and cytoplasm. HtrII has a common feature with HtrI, the sensory rhodopsin I transducer; like HtrI, HtrII possesses a hydrophilic loop structure just after the second transmembrane segment. The C-terminal 299 residues (765 amino acid residues total) of HtrII show strong homology to the signaling and methylation domain of eubacterial transducer Tsr. The hydropathy plot of the primary structure of SRII indicates seven membrane-spanning alpha-helical segments, a characteristic feature of retinylidene proteins ("rhodopsins") from a widespread family of photoactive pigments. SRII shows high identity with SRI (42%), bacteriorhodopsin (BR) (32%), and halorhodopsin (24%). The crucial positions for retinal binding sites in these proteins are nearly identical, with the exception of Met-118 (numbering according to the mature BR sequence), which is replaced by Val in SRII. In BR, residues Asp-85 and Asp-96 are crucial in proton pumping. In SRII, the position corresponding to Asp-85 in BR is conserved, but the corresponding position of Asp-96 is replaced by an aromatic Tyr. Coexpression of the htrII and sopII genes restores SRII phototaxis to a mutant (Pho81) that contains a deletion in the htrI/sopI and insertion in htrII/sopII regions. This paper describes the first example that both HtrI and HtrII exist in the same halobacterial cell, confirming that different sensory rhodopsins SRI and SRII in the same organism have their own distinct transducers.
Resumo:
Megalin (gp330), an epithelial endocytic receptor, is a major target antigen of Heymann nephritis (HN), an autoimmune disease in rats. To elucidate the mechanisms of HN, we have mapped a pathogenic epitope in megalin that binds anti-megalin antibodies. We focused our attention on four clusters of cysteine-rich, low density lipoprotein receptor (LDLR) ligand binding repeats in the extracellular domain of megalin because they represent putative ligand binding regions and therefore would be expected to be exposed in vivo and to be able to bind circulating antibodies. Rat megalin cDNA fragments I through IV encoding the first through fourth clusters of ligand-binding repeats, respectively, were expressed in a baculovirus system. All four expression products were detected by immunoblotting with two antisera capable of inducing passive HN (pHN). When antibodies eluted from glomeruli of rats with pHN were used for immunoblotting, only the expression product encoded by fragment II was detected. This indicates that the second cluster of LDLR ligand binding repeats is directly involved in binding anti-megalin antibodies and in the induction of pHN. To narrow the major epitope in this domain, fragment II was used to prepare proteins sequentially truncated from the C- and N-terminal ends by in vitro translation. Analysis of the truncated translation products by immunoprecipitation with anti-megalin IgG revealed that the fifth ligand-binding repeat (amino acids 1160-1205) contains the major epitope recognized. This suggests that a 46-amino acid sequence in the second cluster of LDLR ligand binding repeats contains a major pathogenic epitope that plays a key role in pHN. Identification of this epitope will facilitate studies on the pathogenesis of HN.
Resumo:
Crouzon syndrome is an autosomal dominant condition primarily characterized by craniosynostosis. This syndrome has been associated with a variety of amino acid point mutations in the extracellular domain of fibroblast growth factor receptor 2 (FGFR2). FGFR2/Neu chimeras were generated by substituting the extracellular domain of Neu with that of FGFR2 containing the following Crouzon mutations: Tyr-340-->His; Cys-342-->Tyr; Cys-342-->Arg; Cys-342-->Ser; Ser-354-->Cys: and delta17 (deletion of amino acids 345-361). Each of the mutant chimeric FGFR2/Neu constructs stimulated focus formation in NIH 3T3 cells, indicating that Crouzon mutations can stimulate signal transduction through a heterologous receptor tyrosine kinase. In vitro kinase assay results indicate that FGFR2 receptors containing Crouzon mutations have increased tyrosine kinase activity and, when analyzed under nonreducing conditions, exhibited disulfide-bonded dimers. Thus the human developmental abnormality Crouzon syndrome arises from constitutive activation of FGFR2 due to aberrant intermolecular disulfide-bonding. These results together with our earlier observation that achondroplasia results from constitutive activation of the related receptor FGFR3, leads to the prediction that other malformation syndromes attributed to FGFRs, such as Pfeiffer syndrome and Thanatophoric dysplasia, also arise from constitutive receptor activation.
Resumo:
To identify determinants that form nonapeptide hormone binding domains of the white sucker Catostomus commersoni [Arg8]vasotocin receptor, chimeric constructs encoding parts of the vasotocin receptor and parts of the isotocin receptor have been analyzed by [(3,5-3H)Tyr2, Arg8]vasotocin binding to membranes of human embryonic kidney cells previously transfected with the different cDNA constructs and by functional expression studies in Xenopus laevis oocytes injected with mutant cRNAs. The results indicate that the N terminus and a region spanning the second extracellular loop and its flanking transmembrane segments, which contains a number of amino acid residues that are conserved throughout the nonapeptide receptor family, contribute to the affinity of the receptor for its ligand. Nonapeptide selectivity, however, is mainly defined by transmembrane region VI and the third extracellular loop. These results are complemented by a molecular model of the vasotocin receptor obtained by aligning its sequence with those of other G-protein coupled receptors as well as that of bacteriorhodopsin. The model indicates that amino acid residues of transmembrane regions II-VII that are located close to the extracellular surface also contribute to the binding of vasotocin.
Resumo:
The N-methyl-D-aspartate (NMDA) subtype of ionotropic glutamate receptors is a heterooligomeric membrane protein composed of homologous subunits. Here, the contribution of the M3-M4 loop of the NR1 subunit to the binding of glutamate and the co-agonist glycine was investigated by site-directed mutagenesis. Substitution of the phenylalanine residues at positions 735 or 736 of the M3-M4 loop produced a 15- to 30-fold reduction in apparent glycine affinity without affecting the binding of glutamate and the competitive glycine antagonist 7-chlorokynurenic acid; mutation of both residues caused a >100-fold decrease in glycine affinity. These residues are found in a C-terminal region of the M3-M4 loop that shows significant sequence similarity to bacterial amino acid-binding proteins. Epitope tagging revealed both the N-terminus and the M3-M4 loop to be exposed extracellularly, whereas a C-terminal epitope was localized intracellularly. These results indicate that the M3-M4 loop is part of the ligand-binding pocket of the NR1 subunit and provide the basis for a refined model of the glycine-binding site of the NMDA receptor.
Resumo:
Behavioral stress has detrimental effects on subsequent cognitive performance in many species, including humans. For example, humans exposed to stressful situations typically exhibit marked deficits in various learning and memory tasks. However, the underlying neural mechanisms by which stress exerts its effects on learning and memory are unknown. We now report that in adult male rats, stress (i.e., restraint plus tailshock) impairs long-term potentiation (LTP) but enhances long-term depression (LTD) in the CA1 area of the hippocampus, a structure implicated in learning and memory processes. These effects on LTP and LTD are prevented when the animals were given CGP39551 (the carboxyethylester of CGP 37849; DL-(E)-2-amino-4-methyl-5-phosphono-3-pentenoic acid), a competitive N-methyl-D-aspartate (NMDA) receptor antagonist, before experiencing stress. In contrast, the anxiolytic drug diazepam did not block the stress effects on hippocampal plasticity. Thus, the effects of stress on subsequent LTP and LTD appear to be mediated through the activation of the NMDA subtype of glutamate receptors. Such modifications in hippocampal plasticity may contribute to learning and memory impairments associated with stress.
Resumo:
Pancreatic polypeptide (PP) is produced in the islets of Langerhans and released in response to meals. It belongs to a family of peptides that also includes neuropeptide Y and peptide YY. In the present communication, we describe a rat receptor with high affinity for PP, therefore named PP1. Clones for the PP1 receptor were obtained by PCR using sequence information for the neuropeptide Y receptor Y1 from several species. The PP1 receptor has 46% overall amino acid sequence identity to the rat Y1 receptor and 56% identity in the transmembrane regions. The PP1 receptor displays a pharmacological profile that is distinct from previously described neuropeptide Y-family receptors. In competition with iodinated bovine PP, it binds rat PP with an affinity (K(i)) of 0.017 nM, while the affinities for peptide YY and neuropeptide Y are substantially lower with K(i) values of 162 and 192 nM, respectively. In stably transfected CHO cells, the PP1 receptor inhibits forskolin-stimulated cAMP synthesis. Northern blot hybridizations to a panel of mRNAs detected transcripts in testis and lung. A faint band was seen in colon and total brain. In contrast, the human receptor is expressed primarily in colon and small intestine. Whereas rat and human PP1 bind PP with the same affinity, the rat receptor has much lower affinity than its human ortholog for peptide YY and neuropeptide Y. Interestingly, the amino acid sequence identity between rat and human PP1 is only 75%. Thus, the sequence, the tissue distribution, and the binding profile of the PP1 receptor differ considerably between rat and human.
Resumo:
Since ribosomally mediated protein biosynthesis is confined to the L-amino acid pool, the presence of D-amino acids in peptides was considered for many years to be restricted to proteins of prokaryotic origin. Unicellular microorganisms have been responsible for the generation of a host of D-amino acid-containing peptide antibiotics (gramicidin, actinomycin, bacitracin, polymyxins). Recently, a series of mu and delta opioid receptor agonists [dermorphins and deltorphins] and neuroactive tetrapeptides containing a D-amino acid residue have been isolated from amphibian (frog) skin and mollusks. Amino acid sequences obtained from the cDNA libraries coincide with the observed dermorphin and deltorphin sequences, suggesting a stereospecific posttranslational amino acid isomerization of unknown mechanism. A cofactor-independent serine isomerase found in the venom of the Agelenopsis aperta spider provides the first major clue to explain how multicellular organisms are capable of incorporating single D-amino acid residues into these and other eukaryotic peptides. The enzyme is capable of isomerizing serine, cysteine, O-methylserine, and alanine residues in the middle of peptide chains, thereby providing a biochemical capability that, until now, had not been observed. Both D- and L-amino acid residues are susceptible to isomerization. The substrates share a common Leu-Xaa-Phe-Ala recognition site. Early in the reaction sequence, solvent-derived deuterium resides solely with the epimerized product (not substrate) in isomerizations carried out in 2H2O. Significant deuterium isotope effects are obtained in these reactions in addition to isomerizations of isotopically labeled substrates (2H at the epimerizeable serine alpha-carbon atom). The combined kinetic and structural data suggests a two-base mechanism in which abstraction of a proton from one face is concomitant with delivery from the opposite face by the conjugate acid of the second enzymic base.
Resumo:
An adipocyte membrane glycoprotein, (FAT), homologous to human CD36, has been previously implicated in the binding/transport of long-chain fatty acids. It bound reactive derivatives of long-chain fatty acids and binding was specific and associated with significant inhibition of fatty acid uptake. Tissue distribution of the protein and regulation of its expression were also consistent with its postulated role. In this report, we have examined the effects of FAT expression on rates and properties of fatty acid uptake by Ob17PY fibroblasts lacking the protein. Three clones (P21, P22, and P25) were selected based on FAT mRNA and protein levels. Cell surface labeling could be demonstrated with the anti-CD36 antibody FITC-OKM5. In line with this, the major fraction of immunoreactive FAT was associated with the plasma membrane fraction. Assays of oleate and/or palmitate uptake demonstrated higher rates in the three FAT-expressing clones, compared to cells transfected with the empty vector. Clone P21, which had the highest protein levels on Western blots, exhibited the largest increase in transport rates. Fatty acid uptake in FAT-expressing P21 cells reflected two components, a phloretin-sensitive high-affinity saturable component with a Km of 0.004 microM and a basal phloretin-insensitive component that was a linear function of unbound fatty acid. P21 cells incorporated more exogenous fatty acid into phospholipids, indicating that binding of fatty acids was followed by their transfer into the cell and that both processes were increased by FAT expression. The data support the interpretation that FAT/CD36 functions as a high-affinity membrane receptor/transporter for long-chain fatty acids.
Resumo:
Advances in screening technologies allowing the identification of growth factor receptors solely by virtue of DNA or protein sequence comparison call for novel methods to isolate corresponding ligand growth factors. The EPH-like receptor tyrosine kinase (RTK) HEK (human EPH-like kinase) was identified previously as a membrane antigen on the LK63 human pre-B-cell line and overexpression in leukemic specimens and cell lines suggested a role in oncogenesis. We developed a biosensor-based approach using the immobilized HEK receptor exodomain to detect and monitor purification of the HEK ligand. A protein purification protocol, which included HEK affinity chromatography, achieved a 1.8 X 10(6)-fold purification of an approximately 23-kDa protein from human placental conditioned medium. Analysis of specific sHEK (soluble extracellular domain of HEK) ligand interactions in the first and final purification steps suggested a ligand concentration of 40 pM in the source material and a Kd of 2-3 nM. Since the purified ligand was N-terminally blocked, we generated tryptic peptides and N-terminal amino acid sequence analysis of 7 tryptic fragments of the S-pyridylethylated protein unequivocally matched the sequence for AL-1, a recently reported ligand for the related EPH-like RTK REK7 (Winslow, J.W., Moran, P., Valverde, J., Shih, A., Yuan, J.Q., Wong, S.C., Tsai, S.P., Goddard, A., Henzel, W.J., Hefti, F., Beck, K.D., & Caras, I.W. (1995) Neuron 14, 973-981). Our findings demonstrate the application of biosensor technology in ligand purification and show that AL-1, as has been found for other ligands of the EPH-like RTK family, binds more than one receptor.
Resumo:
We have isolated an Arabidopsis thaliana gene that codes for a receptor related to antifungal pathogenesis-related (PR) proteins. The PR5K gene codes for a predicted 665-amino acid polypeptide that comprises an extracellular domain related to the PR5 proteins, a central transmembrane-spanning domain, and an intracellular protein-serine/threonine kinase. The extracellular domain of PR5K (PR5-like receptor kinase) is most highly related to acidic PR5 proteins that accumulate in the extracellular spaces of plants challenged with pathogenic microorganisms. The kinase domain of PR5K is related to a family of protein-serine/threonine kinases that are involved in the expression of self-incompatibility and disease resistance. PR5K transcripts accumulate at low levels in all tissues examined, although particularly high levels are present in roots and inflorescence stems. Treatments that induce authentic PR5 proteins had no effect on the level of PR5K transcripts, suggesting that the receptor forms part of a preexisting surveillance system. When the kinase domain of PR5K was expressed in Escherichia coli, the resulting polypeptide underwent autophosphorylation, consistent with its predicted enzyme activity. These results are consistent with PR5K encoding a functional receptor kinase. Moreover, the structural similarity between the extracellular domain of PR5K and the antimicrobial PR5- proteins suggests a possible interaction with common or related microbial targets.
Resumo:
In the cortex fast excitatory synaptic currents onto excitatory pyramidal neurons and inhibitory nonpyramidal neurons are mediated by alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) receptors exhibiting cell-type-specific differences in their kinetic properties. AMPA receptors consist of four subunits (GluR1-4), each existing as two splice variants, flip and flop, which critically affect the desensitization properties of receptors expressed in heterologous systems. Using single cell reverse transcription PCR to analyze the mRNA of AMPA receptor subunits expressed in layers I-III neocortical neurons, we find that 90% of the GluR1-4 in nonpyramidal neurons are flop variants, whereas 92% of the GluR1-4 in pyramidal neurons are flip variants. We also find that nonpyramidal neurons predominantly express GluR1 mRNA (GluR1/GluR1-4 = 59%), whereas pyramidal neurons contain mainly GluR2 mRNA (GluR2/GluR1-4 = 59%). However, the neuron-type-specific splicing is exhibited by all four AMPA receptor subunits. We suggest that the predominance of the flop variants contributes to the faster and more extensive desensitization in nonpyramidal neurons, compared to pyramidal cells where flip variants are dominant. Alternative splicing of AMPA receptors may play an important role in regulating synaptic function in a cell-type-specific manner, without changing permeation properties.